- AD-A423 318 AREA-EFFICIENT VLSI COMPUTATION(U) CARNEGIE-MELLON UNIV
PITTSBURGH PR DEPT OF COMPUTER SCIENCE C E LEISERSON
OCT 81 CMU-CS-82-188 F33615-78-C-1551

UNCLASSIFIED ' F/G 9/2

-

Padindil dham e Shatn T T , T

R 28

3.2
vl P22

—
L]
>

TTVR AP gy
I g
i o i
I ’
! o

s ‘ .n : N ‘.' .

FEEEEEE

—

L3

—
EF
13

““l L {29
JlLe

22 fiis nee

"
u

'.‘.'"'.l“*f“‘"wT-‘—.- bt
d

Tt e N e
. P A fa
. AT

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i vy

y - -
@

v) .
Voo
ey

! .
oo

b .

L~ -

3

| v
Fan . e - P - P

p

,
-
.' .
.
[
i‘-"
4
-
e
4
SN

GLE oopy

ADA123318

h MU-CS-82-168 @]
g
B

Area-Efficient VLSI Computation

Charles Eric Leiserson
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

October 1981

DEPARTMENT
of ‘

- COMPUTER SCIENCE

DTIC

B ELECTY M
:) JAN 1 31983

. E -
Carnegie-Mellon University

83 01 138 015

]
P
3 ‘ N
L
=
w7
H
o
1] .‘
Lo
N
~

CMU-CS-82-108

'@

N T R Tt T

Area-Efficient VLSI Computation

Charles Eric Leiserson A d
Department of Computer Science)
Carnegie-Mellon University]
Pittsburgh, Pennsylvania 15213 o

October 1981

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements
Jor the degree of Doctor of Philosophy.

2
vl
g ~ 4
- 4
= -
- -
o "
[;
r; 1
; .
3
= . . . S
I @ t'his research was sponsored in part by the Defense Advanced Rescarch Projects Agency (1501) o
p - ARPA Order Ne. 3597 which is monitored by the Air Force Avionics Laboratory Under Contract =3
1 1'33615-78-C-1551, by the National Science Foundation under Grant MCS 78-236-76, and by the .
: Office of Naval Rescarch nnder Contract NO0014-76-C-0370. The views and conclusions contained N
4 in this decument are those of the author and should not be interpreted as representing the official %
- policies, cither exprassed or implicd, of the Defense Advanced Rescacch Projects Agency or the -
9 L) y C . L)
g United States Government. Chailes F. Leiserson s also supported by a Fannie and John Hertw -
- FFoundation felloveship, 1
e .
Y ~

RS Saatn et caut Bam e e |

. e

p——

Acc.\:;v":-_(,'\ For :
(mTIZ Al)~ § d
DIIT T a !

Unannoumaed
J legid

[+

o

_E}gtribution/
Contents Availability Codes

TlAvail anijor
Dist Special

Aea 9.4 2 o ¢+ _.a

l\fifﬁif;) ‘F;}] ‘ g
Introduction ~2 1
PART I: v
Systolic Systems 3 .
1. What is a Systolic System? 4 o
1.1 Introduction 4 o
1.2 A Simple Systolic Priority Queue 6 -
1.3 Finite-State Automata 10 1
1.4 The Systolic Model 13
2. The Structure of Systclic Systems 19
2.1 Introduction 19 »
2.2 The Systelic Conversion Lemma 22 "1
2.3 Design Implications of the Systolic Conversion Lemma 28 -
2.4 The Reset Theorem 32 -
3. A Selection of Systolic Algorithms 37 ‘;
3.1 Introduction 37 s
3.2 Priority Queues and Search Trees K o
3.2.1 Simple Priority Queues 39
3.2.2 Variable-Length Keys 40
3.2.3 Real-Time Order Statistics 42 9
3.2.4 Search Trees 44 ‘
3.2.5 The Systolic Multiqueue 47
3.3 Counters 49 B
3.4 Pattern Matching and Language Recognition 52 --
: 4. Matrix Computations on Systolic Arrays 56 R
4.1 Introduction 56 |
+.2 Matrix-Vector Computations . 59 .
4.2.1 Matrix-Vector Multiplication 59 .
4.2.2 Triangulur Lincar Systems 63 -1
4.2.3 Variants of Matrix-Vector Multiplication 65 ' 1
|
4
1 .

SR
!

r

!

4

,

f

4

I

r

| N

cm eY ST e w e AT SN N TE YT S T T T WY e

_— -

AREA-EFFICIENT VLSI C DMPUTATION

1.3 Matrix Computations

4.3.1 Matrix Multiplication on a Hex-Connected Systolic Array
4.3.2 LU-Decomposition on a Hex-Connected Systolic Array

PART Il

5.

Area-Efficient Layouts
Preliminaries

5.1 Introduction

5.2 The VLSI Model for Layouts
5.3 Separator Theorems

5.4 A Nonlinear Recurrence

. A Layout Algorithm

6.1 Introduction

6.2 Areas and Aspect Ratios

6.3 Area-Efficient Layout Construction

6.4 Corollaries of the Main Result

6.5 An Efficient Implementation of the Layout Algorithm

. Further Layout Results

7.1 Introduction

7.2 Layouts with Collinear Vertices
7.3 Configurable Layouts

7.4 Packaging a Complete Binary Tree

Conclusion

Systolic Systems
Layouts

Acknowledgments
References

69
69
74

81
82
82
84
86
88
93

3
93
97
100
104

112

112
113
116
118

121

121
123

127
129

ot A e A R

-
&L
-
-

Figure 1-1:
Tahle 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 2-1:
Figure 2-2:

- Table 2-3:
Figure 2-4:

Table 2-5:
Fignre 3-1:
Figure 3-2:

Figure 3-3:
Figure 3-4:

Table 4-1:

Figure 4-2.
Figure 4-13:

——— —— T B P T T R o, T T o W ¥ v W e

Figures and Tables

A systolic device connected to the bus of a computer system.
Definition of the three-sorter.

A real-time systolic priority queue.

The operation of the systolic priority queue.

The difference between Moore machines and Mealy ma-
chines is where outputs are produced.

A PLA implementation of a Moore finite-state machine.

A PLA implementation of a Mealy finite-state machine.
Broadcasting can be implemented by Mealy machines.

The transformation of a Moore machine in the proof of the
Systolic Conversion Lemma.

The transformation of a Mealy machine in the proof of the
Systolic Conversicn Lemma.

Delays introduced by the Systolic Conversion Lemma.

A labeling for the system from Figure 1-8 that satisfies the
conditions of the Systolic Conversion Lemma.

Comparison of timings in S and 8’ (¢' = 2t +1(v)).

The tree-like systolic structure that performs MEMBER with
O(1g n) response.

The linear ordering of a combined preorder, inorder, and
postorder tree walk,

The systolic multiqueue.

Any string ending with “ab%cd” is recognized by this NFSA.
Definition of the inner-product-step processor.

Two geometries for the inner-product-step processor.

The linearly connected systolic array that performs matrix-
vector multiplication,

- o o — P P R S U W e e O S WU V!

23

23

24
27

27

aos

58
58
61

RS
q‘J,‘;

)

YW N |

e IR

Figure 4-4:
Figure 4-5:
Figure 4-6:

Figure 4-7:
Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:

Figure 4-12:
Figure 4-13:

Figure 4-14:

Figure 5-1:
Figure 5-2:
Figure 5-3:

Tahle 5-4:

Figure 6-1:
Figure 6-2:
Table 6-3:
Figure 6-4:
Figure 6-5:
Table 6-6:
Figure 6-7.
Figure 6-8:
Table 6-9:

Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:

Figure 7-5:

Figure 7-6:

— Tr— v -

The operation of th~ linear systolic array in Figure 4-3.

The band (lower) r:1angular linear system where g = 4.

The linearly connected systolic array for solving the trian-

gular linear system in Figure 4-3.

The operation of the linear systolic array in Figure 4-6.

The convolution of vectors a and x.

A 4-tap FIR filter with coefficients a;, a,, a,, and a,.
The discrete Fourier transform of vector x.
A hex-connected systolic array that computes the matrix
product shown in Equation (4-5).
The operation of the hex-connected systolic array in
Figure 4-11.
The hex-connected systolic array for pipelining the
LU-decomposition of the band matrix in Equation (4-6).
The operation of the hex-connected array in Figure 4-13.

An O(nlgn) layout of a complete binary tree.

The H-tree layout of a complete binary tree.

Two horizontal and two vertical slices are more than suffi-
cient to route an edge.

Solutions of Recurrence (5-1).

A layout can be “folded” to fit into a square.

The relationships among rectangles in Step 2.

Areas of graphs.

The X-tree on 31 = 2° — 1 vertices.

The cube-connected-cycles network on 24 = 3-23 vertices.
Time devoted to the separator subroutine, -

The representation of a layout.

Routing an edge by slicing.

Time devoted to the management of the layout represen-
tation. :

The construction of a layout with collinear vertices.

The construction in Lemma 7-1.

A layout that can configure any tree.

An inefficient partitioning of a complete binary tree into
chips.

Only one kind of chip is needed to package a complete
binary tree.

A large complete binary tree built up from a single kind of
chip.

AREA-EFFICIENT VLSI CO viPUTATION

62
64
65

66
67
68
68
71

12
76
71

82
83
86

90

%4

98
101
101
103
106
107
108
111

113
114
116
119

119

120

r,'," hs i et gt S an au 44

LA L e en e e eecewn s Sah et SRA 0 Ao S NI A A Nl A

Introduction

The remarkable advance of very large scale integrated (VLSI) circuitry has
sparked research into the design of algorithms suitable for direct hardware imple-
mentation. To the computer theorist, VLSI provides attractive models of parallel
computation for three reasons. First, the number of electronic components that can
fit on a single chip is large, and beyond that has been doubling every two years. Itis
currently possible to place 10° components on a single chip, and it is projected that
this number will very likely grow to 107 or even 108, These large numbers make
asymptotic analysis and other theoretical tools applicable to this engineering
discipline. Secondly, VLSI hardware expense can be related directly to the very
mathematical and geometric cost function of area. Unlike older technologies, the
components and interconnections between components are made out of the same
“stuff” in VLSI, and hence area is a uniform cost measure for both. Finally, VLSI
provides a model of parallel computation that includes communication costs as well
as operation counts. The cost of communication is represented explicitly as the area
of a fixed-width wire between two processors, and the time for communication can
depend on the distance between two processors. In fact, communication can
consume most of the area of an integrated circuit chip and most of the computation
time as well. A major goal, therefore, is to design algorithms which are both time-
efficicnt and arca-cfficient using complexity measures that reflect the true imple-

mentation costs.

- . . ¢ e
- ¥ The two parts of this thesis address these tvo measures of efficieney. Pert |

WL e . i - el 3 T I At iy T adcER T — T YT T YT T Ty

Z AREA-EFFICIENT VLSI CCMPUTATION

| o
v analyzes systolic systems [20, 21] which marry the ideas of pipelining an1 multiproc-
cssing in a single framework of design. Part II looks at the la;uut of their , :
communication paths. Although the two parts fit together, it should be understood ._J
that the ideas in each stand alone. The results of Part I can be applied to systems "3
which are not systolic, and even systems which are not assembled on integrated 3
circuits. The layout resulits of Part Il can be applied to more general communication ‘,‘
structures than graphs of systolic systems, and the ideas for representing layouts can
be used in other routing algorithms. -
'd
1
'-l
o
3
4
: p
P 2
o - 1
E .
= o
1 -
!
o .
f -
— - —————a — —— . . — I

PARTI

SYSTOLIC SYSTEMS

CHAPTER 1

What is a Systolic System?

1.1 Introduction

The complexity of integrated-circuit chips being produced today makes it
feasible to build inexpensive, special-purpose subsystems that rapidly solve sophis-
ticated problems on behalf of a general-purpose host computer. Of the many ways
to exploit the burgeoning technology, systolic systems have especially desirable
properties from both engineering and mathematical standpoints. Systolic systems
are an attempt to capture the concepts of parallelism, pipelining, and intercon-
nection structures in a unified framework of mathematics and engineering. They
embody engineering techniques such as mulitiprocessing and pipelining together
with the more theoretical ideas of cellular automata and algorithms, and therefore
are an excellent subject for investigation from a combined standpoint.

The term “systolic™ comes from “systole,” which means “contraction,” and in
physiology refers to the contraction of the heart that drives blood through the
circulatory system of the body. In a systolic system, the processors are hearts that
pump multiple streams of data throughout the system. The regulaf beating of these
parallel processors maintains a constant flow of data lhrough the network. This
“blood pressure™ is the principal attribute of a systolic system. Every processor
computes on cach clock tick. As a processor pumps data items through itsclf, it

petformis a queck operation which ni updare sotae of e items. AT operands fon

'.—va'—ﬁ"T"r“r' iR R a
([

WHAT IS A SYSTOLIC SYSTEM? J

somputation arrive at a processor simultaneously. No waitiny :s necessary—the
processors just compute, rhy thmically and perpetually.

The central issue in parallel systems is communication, and systolic systems
address this problem explicitly. Two processors that communicate must have a data
path between them, and free global communication is disallowed. The farthest a
datum can travel in unit time is from one processor to an adjacent processor.

Systolic systems are not general-purpose computing ercines. A systolic
computing system is a subsystem that performs its computation- a1 behalf of a host.
For example, Figure 1-1 illustrates how a special-purpose s} .sic device might
form part of a computer system. The host need not be acos : -, however. It

might be a real-time data stream, or some other electronic system.

8 US 3%
! | 1
Primary Systoiic ,

1
CPU

Figure 1~-1: A systolic device connccted to the bus of a computer system.

Many readers will see similarities between the systolic paradigm and other
computational models in the literature. For instance, Stone's algorithm for
performing the FFT on a shuffle-exchange network [37] is systolic—although
communication with a host is not considered. Much study has centered on the
subclass of systolic systems called iterative arrays[16] (also called cellular automata
or tesselation automaia), whose machines form a d-dimensional mesh. This thesis
uses the name systolic arrays for these systems, not to add to confusion, but because
they constitute the array-structured subclass of all systolic systems. The theorems of
Chapter 2 will demonstrate common attributes of all systolic systems.

This is not to say that all systolic systems are created equal. VLSI technology

has made onc thing quite clear: simple and regular machines have substantial

ta A MR e e maa s -

P G RN

F-"

wr-VAv PPy

DaEie an o o0 SR G an an o AL c o un S oh See i e g 4

'v—v-y—vvdvv_"—rrv A

t AREA-EFFICIENT VLSI COMPUTATION

advantages over complicated machines. The results of Part I show that high density
of processors is an immediate by-product of simple connections betwe 2.1 processors.
And technologists know that high density implies both high performance and low
overhead for support components. (Sutherland and Mead [38] have a good
discussion on the importance of having simple and regular geometries for
processors.) Because of their regular structure, extra attention will be paid to
systolic arrays and systolic trees. | |
The remainder of this chapter contains background and definitions and is
organized as follows. Section 1.2 gives an example of a real-time systolic priority
queue in order to further the reader’s intuition about systolic systems. Section 1.3
discusses finite-state automata which are the basic component of systolic systems.
Section 1.4 gives a formal definition for systolic systems and the related semisystolic

systems.

1.2 A Simple Systolic Priority Queue

Before we begin a formal treatment of systolic systems, it is worthwhile to
consider an example. Many programming applications require the ability to insert
records into a set, -and at any time to retrieve from the set the record having the
smallest key according to some linear ordering. Any data structure that provides
such services is called a priority queue {1]. The operation INSERT(Q, a) replaces the
set Q with the set Q U {a}. The operation EXTRACTMIN(Q) returns the smallest
element g of Q and replaces Q with Q — {a}. '

Priority qucues are usually implemented in software, but a priority queue can
he built in hardware as a systolic array. One method uses identical processors, cach
of which is capable of sorting three elements. The three-sorter has three inputs X, Y,
and Z and produces thice outputs X', Y/, and Z' which are the minimun., median,
and maximum of the inputs. Tuble 1 -2 shows this relationship between inputs and

outpats, e ontpuis of fhe threesorter are atchied, and e logie s chocbed o that

A)

0!

S

L Sanes miea e Baan shosy Mbea s RS B Sietic A A Aal- AT Sull S

WHAT IS A SYSIOLIC SYSIEM? , 7

Table 1-2: Decfinition of the three-sorter.

Inputs Outputs
X Y z X' Y z
x y z min(x, y, z) med(x,y, z) max(x,y,z)

when several of these processors are intercbnnected, the changing output of one will
not interfere with the input to another. It is possible to view the processors as being
asynchronous—each comphtes its output values when all its inputs are available.
The synchronous approach adopted here is more intuitive for the results of this
thesis, however, and global clocking simplifies hardware désign. The issue of
clocking will be discussed in more detail in Section 1.4.

Figure 1-3 shows how three-sorters are interconnected to make a systolic
priority queue. In the figure, the outputs from the top. middle, and bottom of a
Processor are respectively"me minimum, median, and maximum of the inputs. The
minimum from each processor is fed leftward, and the median and maximum are
fed rightward. This tends to keep smaller elements on the left and larger ones on
the right. An infinity key oo which is larger than all other keys is provided as
constant input on the right. The two inputs on the left are connected to the host
computer. Initially, all the elements in the queue have a key of 00. As elements are
inserted on the left, they move rightward displacing oo keys which are output on the

right. If ever the outputs on the right are not co's, the queue overflows.

X xke—x' xpe—Ix’ xle—Ix’ xpe—ix’ XL<—
Host 1Y Y=Y Y YY’:jYY’_YY-—)
o z zAjz 27—z 2tz z’jz Z—

Figure 1-3: A real-time systolic priority queue.

Several steps of the operation of the systolic priority queue are illustrazed in

R

-4
L

o

e 4 g

Ty ey Wy r.v

. T i

& AREA-EFFICIENT VLSI COMIP'UTATION

“igure 1-4. The figure shows the data on the wires between processos. The first
column shows the commuanication between the host and the first processor on
successive clock ticks, the second column shows the communication between the
first processor and the second processor, and so forth. On the first clock tick, the
host inserts the item 6 into the queue by providing 6 and — oo as inputs. The first
processor sorts these two values and ‘the value —35 it receives from the second
processor, and on the second clock tick outputs — oo which is ignored by the host.

Notice that on the first clock tick only odd-numbered processors do useful
work, and on the second clock tick only even-numbered processors do useful work.
This phenomenon occurs often in the design of systolic systems, and is the inevitable
result of certain design techniques (see Chapter 2). There are several ways to
achieve full utilization, however. For instance, one can coalesce adjacent processors
so that only half the number are needed. Alternatively, if the number of processors
is odd. the outputs from the ends of the systolic array can be piped back through the
systolic array to make use of the processors which operate on the off-beat. Other
variations will be discussed in future chapters.

The host performs abstract INSERT and EXTRACTMIN operations, but the
basic operation of the systolic priority queue is somewhat different. With each clock
tick. the systolic array performs a combination of two INSERT operations and one
EXTRACTMIN. To perform an insertion of an item a on behalf of the host, the item
a and a dummy -oc0 key are prescnted as input to the leftmost processor. When the
clock ticks, the dummy -o0 is returned as output, and the item g is inserted. The
host. need not be aware of the existence of the dummy -oc key. however. To
perform an EXTRACTMIN operation on behalf of the host, two dummy oo keys are
input, and after the clock ticks, the minimum clement of the gueue is output and
retirned to the host. The two dummy oo keys will find their way rightward in the
systolic array and eventually will be output on the right, much as corn goes through

the new maid, With cach poir of clock ticks, the prioriny quene s raady 10 aveente

anciher INSERT or FNTIINCTVEN,

2 aal o ch PN STy

'.‘4

-~ —— —— -~ - — MR
F. WHAT IS A SYSTOLIC SYSTEM? 9 »’
F
| J
®
f'(- . _5 . w . w =9
- InvserT b 6 : -2 : 0 - -
. — 4 0 o
)]
E —-00 . =2 . o0 . ":
: . -5 . 4 . o0 R
4 6 00 o0 j
P. ° —5 ¢ 4 M o0 "4
h ExmrAacTMiv ® : -2 . o : A
- 0 6 o0 !
. (-5 -5 - -2 . o0 . ‘
o . o o] . 4 . 00 »-
®
4 . oo 6 o0 -
E . -2 . 4 . lo'e) B
3 TwserT 3 3 . 0 . 6 . 9
ic -0 o o : -H
! ~ 00 . 4 - 6 .
» . -2 . o0 . 00 -]
F 3 00 o0 3
|- ‘4
F . =2 . 6 . 0 =
[ExtractMin, o - 3 . . o
\ oo 4 oo -
E »
¢ - 2 "2 ° 3 * o0 * e d
1 (3 . o0 . 4 . 00
00 6 o0 1
]
o .
’ B
: Figurg 1-4: The operation of the systolic priority queue.
i |
F o o
]
1
‘. v

-y PPy ——p

il i Al o v k Paffiiiadian D g . Caman

19 AREA-EFFICIENT VL3I COMPUTATION

It may take an element a long tim: to find its place in the systolic array, but to
the host computer, an INSERT op:ation appears to take only two clock cycles.
Since the minimum element in the queue is always at the left, an EXTRACTMIN
operation also takes constant time. The operation of the systolic array is pipelined

so that no degradation occurs even when the host executes many priority queue

" requests in a row. Thus we may say that the systolic array, whose response time is

constant relative to the length of the array, exhibits real-time response to the
operations INSERT and EXTRACTMIN.

1.3 Finite-State Automata

A systolic system is a synchronous network of parallel processors. Each
processor in a systolic system is composed of a constant number of state-output
finite-state automata which are called Moore machines [31]. This type of finite-state
machine has the property that its outputs are dependent upon its state but not upon
its inputs. The output of a transition-output finite-state automaton or Mealy
machine [30], on the other hand, is a combinational function of both the state and
the input. Semisystolic systems may contain both Moore and Mealy machines. This
section explores the differences between these formulations of finite-state automata.

.Figure 1-5 shows the two types of automata. Each is composed of some purely
combinational logic and some clocked state. But whereas the output of the Moore
machine is dependent only on the state of the muchine, the output of the Mealy
machine may be dépcndem also on the current input.

To be muthematically precise, a Moore machine is a quintuple (Q, 7, 0, 8, A),
where

o (isa finite sct of internal siates,
o [is afinite sct of input symbols,

o () asa hnite set of awput symbols,

'<

PO R T N

'.-‘4

_quah s 2o g Saadl Sl ihgt

T e

.

> Ty T T—— —————— ———r——ry—
LA s g eat e A PR A - . "

WHAT IS A SYSTOLIC SYSTEM? 11

Moore

Inputs ——— A Comb. .
Logic
Present-State Next-State

Variables Variables
State

Outputs <——— A

Mealy
Ioputs ——>{Comb. ———> Outputs
Logic
Present-State Next-State
Variables Variables
| State

A

Figure 1-5: The difference between Moore machines and Mealy machines is
where outputs are produced.

s

haad -z..- -

e &, the szare transition function, is a combinational function that maps

@x/lwQ,

o A, the output transition function, is a combinational function that maps
OxIlto0.

In this mathematical model, time can be regarded an independent variable which
takes on integer valzes and is a count of the number of clock cycles or state changes.
The state ¢(r+ 1) aad output o(zr+1) of a Moore machine at time ¢+ 1 is uniquely

determined by its scate g(¢) at time ¢ and its input /() at time 7 by

gu+1) = 8(q(.i()),

(1-1)
o(t+1) = A(q(1), i(0).

A Mealy machine is similarly defined as a quinwple (Q, 7, 0. §. A). where all is the
same as in Mcor= machines except that the output at time 7 is dependent on input at

time 7, that is.

l_' aa A A l

4

[T

L e R aalun an aul s A e s o AN ents ghe AU SNCaht ghe wnd W——

Ty

e gt

12 AREA-EFFICIENT VIS CCMPUTATION

qt+1) = 8{g(). i),

(1-2)
o) = A(g(), i(r).

These machines can be implemented in a variety of ways, all of which are
consistent with the results of the next chaptex;. A general way to implement them on
an integrated circuit, however, is with a programmable logic array (PLA) which has
the advantage of a regular physical.s'micture.] Figure 1-6 shows a PLA implemen-
tation of a Moore machine. The inputs and outputs of the “naked” PLA are clocked
through the input and output registers on two phases of a clock. The state part of
the output is gated out of the PLA and onto the feedback wires.

AND

Iy

Inputs Present-State Outputs
Variables

3 1.1 v 7 1 1

Figure 1-6: A PLA implementation of a Moore finite-state machinc.

Compare this implementation of a Moore machine with a PLA implementation

of a Mealy machine (Figure 1-7). The state is clocked through registers, but since

the input signals are allowed to propagate through to the output unconstrained, a -

change in the signal on an input wire can affect the output without an intervening
clock tick. When Mealy machines are strung together, signals ripple through the
combinational logic of several machines between clock ticks. If the signals feed back

un themsclves before being stopped by a register, they can lutch or oscillate. Even if

Pihe reader is referred o Mead and Corv ay [25] tor 2 gond description of LA,

e et

WHATIS A SYSIOLIC SYSTEM? 13

the probleins associated with ‘e-dback have been precluded, thz settling of combi-
national Jogic can make the c!uck period long in systems with rippling logic. As we
shall see in the next section, only Moore machines are allowed in systolic systems.
The exclusion of Mealy machines helps guarantee that the clock period does not
grow with system size, and makes the number of clock ticks be a measure of time

that is largely independent of system size.

AND OR

U VN IO S N

Inputs Outputs

Present-State
Variabies

—

Figure 1-7: A PLA implementation of a Mealy finite-state machine,

1.4 The Systolic Model

Although a systolic system can be simply viewed as a set of interconnected
Moore machines, its precise specification requires a good deal of messy notation.
Instead of pursuing a course of extreme mathematical formality at the expense of
the reader’s intuition, we shall adopt a simplified notation. But first, it is necessary
to examine what a precise notation would need to specify.

The semantics of the interconnections among many, possibly different ma-

chines are complicated. A machine v produces symbols from a set O, as output. In

the PLA implementation, this set of symbols is represented as the values of the

output register. Just as this register can be divided into groups depending upon
which machines the wires are connected to, so we break up each output symbol in
0, su that the picees correspond 1o the output ports of v, Similarly, cach input

symbol to a muchine can be apportioned among input poris.

'@
as b

'S

L e e A N AR A it - - . - B an S s Bas g AR 4 - " ‘ _—,
14 AREA-EFFICIENT VLSI COMPUTATION

In a formal specification of a connection between two machines, :ho machines }
inight be vertices in a graph. and the connection an edge betwee.: them. The
particular ports spanned by the connection could be designated as labels on the "2
edge. An edge with two labels specifies the physical structure well enough, but, in
addition, the semantics of the interconnection would need to be defined. We would

F -
. 7 . i

have to say mathematically that the set of pieces of output symbols for an output - .;‘
port of one machine is a subset of the set of pieces of input symbols for the |
particular input port of the machine to which it is connected, and that the piece of
input symbol from the input port is the corresponding output symbol from the other .:

T

at any given time.
Rather than keeping track of all these concerns, the simplified notation
specifies only which machines are connected. The structure of interconnections is

given by a directed graph whose vertices are machines. If an edge (v, w) is present
in the graph, this means that some output port of machine v is connected to one of
the input ports of machine w. The particular ports and the symbols communicated
between machines will be treated in an informal, but precise, manner.

The structure of a systolic system S(n) is given by a machine graph G = (V, E)

of n interconnected machines where the vertices in ¥ represent the machines and

the directed edges in £ represent interconnections between the machines.2 The
machines operate synchronously by means of a common clock, and /ime in the
system is measured as the number of clock cycles. All the machines in ¥ are Moore
machines with the exception of one called the host which can be viewed as a Turing- »
cquivalent machine that provides input to and receives output from the systolic

system. To the other machines in the system, however, the host looks like just

z'l'cchnu;nlly speaking. whar we realiy mean is that S is a ol of networks. but use of this
phrasealogy nakes 1or labored prose. Tesicad. we unplicitdy achnowicdee presence of the class by
L abwans etting i e fred vaable =4 network of o pre cossons ™ e tom “comrtad”™ i used for o
'@ cartade which s mdependant of i tat i whes the i oot apple .t B acteork gt

> \Li,‘*'\. -
.

>

) AZND 0 aha) o pan o

T A

F e

" p L famctaas 2nan S e . am Jalih dvan Atuih e Shi Sinne S

WHAT IS A SYSTOLIC SYSTEM? 15

ancther Moore machine, i.e., signals cannot ripple through it. Based on the
machine graph, the neighborhood of a machine v € V is the set of machines with

which it communicates:
Neigh(v) = {wl|(v,w)€E or (w,v)€ E}.

For S(n) to be systolic, it is further required that the Moore machines be small
in the following sense. There must exist constants ¢;» €5 €3, and ¢, such that for all n
and all v € V—{host},

|Q,] < ¢, (the number of states of a machine is bounded),

i) < ¢, (the number of input symbols for a machine is bounded),

*

10, < ¢, (the number of output symbols for a machine is bounded),

[Neigh(v) < c, (the number of neighbors of a machine is bounded,
i. e., the graph has bounded degree).

These “smallness” conditions help guarantee that the systolic model corres-
ponds in performance to a physical implementation. They ensure that as the size of
the systolic system grows, the amount of hardware needed to implement a given
machine in the system remains the same. If the logic in an individual machine were
to grow with system size, the time required for the logic to settle to a stable value
could depend on the size of the system. Thus the measure of time in the model—
number of clock ticks—would poorly reflect the actual time required in a real
implementation. With the smaliness conditions; however, the amount of hardware
required for each machine remains small as system size grows. and hence the time
needed for a machinc to change state is independent of the size of the system.

The smallness conditions go a long way toward ensuring that the number of
clock cycles is a good measure of time in the systolic model. A problem acises,
however, when the time required to propagate a signal between machines hecomes
longer than the time required for the longest combinational-toeic delay thiouyh a

nachine, The perod of the clock must be at feast as Tong e the ongea propag oeon

16 AREA-EFFICIENT VLSI COMPUTATION

delay between machines, which metiri: that the independence of the clock period
irom system size will not be reslized for systems with long interconnections.
Fortunately, this effect is relatively unimportant for many integrated circuit technol-
ogies because propagation delay is typically much shorter than switching delay. The
degree to which the switching delay dominates propagation delay is a measure of the
success of the model. Future work will treat models which include propagation
delays. .

Systolic arrays, which have only nearest-neighbor connections, are especially
attractive for VLSI because propagation delay is insignificant. For this reason, they
form the basis of many of the algorithms in Chapter 3 and Chapter 4. Although the
interconnections in tree layouts are not nearest-neighbor, there is good reason to
believe (see Mead and Rem [29), for example) that logarithmic performance can be
realized for integrated circuit structures based on trees. Because of their robustness
with regard to propagation delay, the results of the next chapter—though applicable
to any systolic structure-—are applied principally to systolic arrays and systolic trees.

The independence of clock period from the delay caused by many stages of
combinational logic is invalidated when Mealy machines are allowed in a system.
Despite the potential for rippling of signals from input to output to input to output,
it is often easier to design with Mealy logic because global communication can be
expressed so easily. For instance, broadcasting, the most common means of global
communication, can be implemented by letting a signal ripple throughout the
system until it reaches all processors.

A semisystolic system is exactly like a systolic system except that some of the
machines may be Mealy machines. All other requirements of systolic systems apply
to semisystolic systems, but in addition, the output cdges from Mcaly machines may
not form a cycle in the machine graph. This constraint precludes the problems of
unclocked stute and oscillwtion which are associated with feedback. No such
requirement is needod for the oatpat adoes from Moore machines ina semisyaolic

system becanse i changing mput to a MVoore niachine cannet atfoet its output,

W

A

._‘14 A&

1; PP

\J
Lad

- . .
PO

WHAT IS A SYSTOLIC SY STEM? 17

In a semisystolic system the outputs of a machine can be uscd to identify it as
being Moore or Mealy. Wu shall adopt a graphical notation i which edges of the
machine graph that originate from Moore machines are represented by double
arrows = and edges from Mealy machines are represented by single arrows — .
When communication goes both ways between two Moore machines, a double-
headed double arrow = is used. ,

To illustrate this notation Figure 1-8 shows a semisystolic system in which the
Mealy machines (circles) implement a broadcast to the Moore machines (squares).
For this example, the combinational Jogic in the Mealy machines is simple—a wire
from the input to the outputs. Among the relationships between machines, we have
that v = v; and v, — v;- Sometimes to indicate that a machine is Mealy or Moore

without specifying the machine to which the outputs go, we write v — or v = .

Figure 1-8: Broadcasting can be implemented by Mealy machines.

Although the machine graph gives the computational structure for a systolic or
semisystolic system, it is often useful to orgénize groups of machines into processors.
For the broadcasting example in Figure 1-8, each Moore machine and the
corresponding Mealy machine that provides its broadcast input can be viewed as a
single processor. Thus although the machine graph for this semisystolic system is a
two-by-n mesh, the system could also be considered as a one-by-n linearlv
connected array of processors. Depending upon the logical structure of the system,
one groupmg might be preferred: for all but trivial svstems, however, several

groupings are surce to exist.

18 AREA-EFFICIENT VLSI COMPPUTATION

Definition: An undirected, bounded-degree graph H is a pia.essor
graph for a systolic or semisystolic system S with machine grapi. & of n
vertices if there exists a constant ¢ independent of n, and a processor
mapping @ from the vertices of G (machines) to the vertices of H
(processors) such that

o if (v, w) € G, then either v = @wor (dv, w) € H, and

e ifweH, thenl{v|w=0y}<ec.
In other words, the processor mapping 4 tells which machines compose which
processors. Two machines which are connected must either be in the same
processor or be in adjacent processors according to the machine graph. To make
sure that the size of a processor is independent of system size, at most ¢ machines in
the machine graph may be mapped to the same processor.

When the processor mapping 4 is a bijection, each processor is composed of
exactly one machine. The processor graph H represents the symmetric closure of G,
and is called the standard processor graph for systolic system S. If A is the standard
processor graph for a systolic system S, and H is also a processor graph for another
system S/, then it follows that every processor graph for S is a processor graph
fors'.

.
Al'ul:l._l

-
PRI

L
Y

r——— Y

CHAPTER 2

The Structure of Systolic Systems

2.1 Introduction

One problem with designing large parallel systems is the difficulty in making
every processor do exactly the right thing at the right time. This problem is
exacerbated for systolic systems because a processor can only communicate with
adjacent processors. Data must propogate through the interconnection network,
which means that machines see the same data at different times. Global control can

reduce the complexity of the design task because it is often easy to think of all

machines acting in unison. But global control potentially involves communication
over large distances and thus can be expensive in terms of system performance. It
make sense, therefore, to determine how systems specified with global communi-
cation can be implemented with local communication.

In Section 1.4, we saw an example (Figure 1-8, page 17) where broadcasting

was expressed in terms of the Mealy logic in a semisystolic system. As another

example of global compuiation, the host might want 1o retricve information about

the machine states of all the processors. For instance, the host might want to know
whether every processor has a zero in some register. Still another kind ol g'obal
computation is displaycd by the propagation of a carry signal down the length of a
simple binary counter. 1ty well known that pipelinine can remove the ¢ obal

Cornintiie ot tece ey for thie e compretwtons tn ineadv canecne b vcne v

1

A SRR

oy
e

] A

s SED A e e e o

-0 AREA-EFFICIENT VLS CCMPUTATION

unidirectional communication, but 4 penalty proportional to the l:ngth of the
pipeline is paid in response time. fu this chapter, we show that global communi-
cation can often be removed with little expense in hardware, throughput, or
response time.

For a systolic subsystem, the principal performance metrics of response time
and throughput must be determined relative to the host. For instance, it is possible
for an individual processor in the system to see slow response from the rest of the
system, while the system nonetheless responds quickly to the host. We shall always
adopt the point of view of the host because the host is interested only in the external
behavior of the subsystem.

Throughput is a measure of how much work a system can do in unit time.
Since time in a systolic system is measured as clock ticks, throughput will usually be
expressed as a fraction of one. The systolic system may multiplex its activity among
several independent jobs in order to increase its throughput. For example, the
priority queue from Section 1.2 can perform a priority queue operation every two
clock ticks. But since there are two equivalence classes of computation in the
system, two jobs could use the hardware on alternate time steps vielding a
throughput of one operation per unit time. For a single job, however, we say that
the dedicated throughput is half an operation per unit time.

Because of the timing problems associated with the rippling in semisystolic
systems, they are not as desirable structures as are purely systolic systems with
regard to integrated circuit implementadon. But since global computations such as
broadcasting can be expressed easily with Mealy machines, this chapter provides
transformations that convert semisystolic systems into systolic systems. In this
context, the set of semisystolic systems will be a design space whereas the set of
sy stolic systems will be the implementation space.

[T one system is™comverted™ o another, itis expectad that the seeond performs

the ame compatiation o the et T the comtent ol o tolic and semsastolic

i A

THE STRUCTURE OF SYSTOL:Z SYSTEMS 21

systems, the operation of the subsystem from the point of view »f the host is at issue.
Two subsystems are said to have the same external behavior if, vhen given the same
sequence of inputs, the two subsystems produce the same sequence of our~. 5. The
performance of the two subsystems may vary, however. Since the host can feed
outputs from a subsystem back into the subsystem, to declare that two systems have
the same behavior is to make a strong statement indeed.?

The effectiveness of the transformations in this chapter can be measured by
comparing the throughput and response of the new system with that of the old.
Other performance parameters are readily derived. The measurements are in terms
of clock ticks, which is accurate for systolic systems, but could be a gross
underestimate for semisystolic systems. Rippling of logic might require that the
clock period be extremely long in order to guarantee that all signals settle to well-
defined values. Remembering that semisystolic systems are the design space, the

assumption that combinational rippling take zero time is conservative. A constant

factor slowdown from the conversion of a semisystolic system to a systolic system -

will be a speedup for an actual implementation of sufficient size. The slowdowns
caused by applying transformations from this chapter aré never more than a factor
of two.

The transformations considered here have the desirable property that they
leave the basic interconnection structure of the system unchunged so that a designer
can choose his interconnection scheme according to criteria outside the domain of
the model without fear of it being altered. He would be unhappy, for example, if
his regular mesh structure were converted into a shuftlle-exchange graph which is

much more difficult to lay out on silicon (see Part 1f). On the other hand, if the

3Ch.|plcr 4 considers matrix computations which have the attribute that the inputs frone the hest to
one machine i tie sastan are independent frons the inputs om the host o nather. Phis siiation
can beowodel d b Coamdenme the resadts of thes Cheoter i sommsc ot medis be vadop nbont sk =
de_ic oot ieabei son s uimad here,

_'.

o

Ad a4

N ..

2 AREA-EFFICIENT VLSI COMPUTATION

p.ouessor graph of the original syste n had an edge (v, w), it is safe to say that adding
1h¢ edge (w, v) would not cause the designer intolerable anguish. Therefore, the
transformations we consider also have the property that the standard' processor
graph of the original system is a processor graph for the transformed system (and
hence any processor graph for the original system is also a procesﬁor graph for the

transformed system).

The remainder of this chapter is organized as follows. Section 2.2 states and .

proves the Systolic Conversion Lemma (Lemma 2-1) which forms the basis of most
of the transformations considered here. Section 2.3 gives a three-step design process
based on the Systolic Conversion Lemma, which is later used in Chapter 3 to design
many systolic systems. The last portion of this chapter, Section 2.4, proves the Reset
Theorem (Theorem 2-6), which shows how any system may be effec_tively initialized
to fixed values in constant time.

2.2 The Systolic Conversion Lemma

The transformation presented in this section can, when applicable, convert a
semisystolic system into a purely systolic system with little loss of efficiency in time
or area. Although it is the major result of Part [, consequences of the Systolic
Conversior: Lemma are likely to be used more often in practice. For example, the
Broadcast Corollary (Corollary 2-4) from Section 2.3 shows that broadcasting can

always be eliminated from an otherwise systolic system.

- - s —— -~ - T o r T wm w o w— - =

THESTRUCTURE OF SYSTOL:C SYSTEMS 23

Lemma 2-1: (Systolic Conversion Lemma.) Let S be a semisystolic
system, and suppose :ach machine v in its machine g'eph G can be
labeled with an integer /(v) such that /(host) = 0, and such that

o if v w, then [(w)—-I(v)is —1,0,0r +1, and
o ifv— w, then/(w)—I(v)is +1.

Then there exists a purely systolic system S’ that has the same behavior as
S, and whose processor graph is the standard processor graph for S. The
response time (in terms of clock cycles) of S’ is twice that of S, the
throughput is the same, and the dedicated throughput is halved.

"~

:?A) E> +<—~A)/A{A

-~ o -

A -

)

Figure 2-1: The transformation of a Moore machine in the proof of the Systolic Conversion Lemma.

. e

T T~

~

A') " AD

Figure 2-2: The transformation of a Mecaly machine in the proof of the Systolic Conversion Lemma.

Proof The two types of machines in S are considered separately. On the left in
Figure 2-1 is a Moore machine v. The outputs that go to vertices of G labeled
[(v)=1, /(v), and /(v)+ 1 have been separated from each other. We shall adopt the
notations v = _w, v =, and v = _w for each of these cases if mgchine w receives
the output from v. In the new system S, this machine on the left in the figure is
converted into the machine on the right. Figure 2-2 shows a similar conversion for

the Mualy machines in S, Notice that the only outputs from the machine go to

.

Az - Lt.. A

[
F O S

. .4
RS- WP

ok dodoih oian

PR AP)

"

PR AREA-EFFICIENT VLOI COMPUTATION

machines labeled /(v)+1. We adopt the notation v —_w if the oLtput goes to
1aachine w. The only difference bi tveen the old and new machines is that delays
have been introduced. A unit delay has been added to change state, and various
delays have been added depending upon the type of connection (see Table 2-3).
Although neither of the new machines is in the form shown in Figure 1-5 for
Moore machines, they are Moore machines because no outputs are dependent on
the current inputs. The machine graph is the same for S/ as it is for S except that all
machines are Moore machines in the new system, and hence the standard processor
graph for S is a processor graph for S'.
Table 2-3: Dclays introduced by the Systolic Conversion Lemma.

Connection Oid Delay New Delay
W=y 1 2
wa_v 1 1
w=_ v 1 3
Wy 0 1

In order to show that the new system S’ properly emulates the old, we define
the status s (1) of a machine v at time ¢ in the old system S as (q,(1), iv(t)), where g,
is the present state and /() is the input. These values become stable in a
semisystolic system before a clock tick, and represent the inputs to the combina-
tional logic upon which the next state depends. In the transformed system S', the
input status s/(:") of machine v at time ¢’ is similarly defined to be (q,(¢"), i'(1"))
which also attains stability as the inputs to the combinational logic before vach clock
tick.

We shall use induction to show that the status of a machine v in ' is related to

the status of the coree ponding niachine in S by

v

b ol

~ v - T ¥

v e owTwrTeT

-

C2EaTK o Aoe e didh 4

T T

y 7 T T Tw e

THESTRUCTURE OF SYSTOL!C SYSTEMS 25
sIAU+IW) = s,(1). 2-1)

This invariant can easily be made to hold at some initial time. We now assume it
holds for all machines at times before ¢/ = 27+ /(v) for an arbitrary machine v, and
seek to show it holds for v at time ¢'. First, we shall show that the state portion of
the status of v satisfies qv’(t') = ¢,(2), and then show the corresponding result
for i X(¢").

At time 21+ /(v)— 2, the state part of the output from the combinational logic
of a machine v, whether Moore or Mealy, is (1) = 8 (g,(1=1), i (t=1)) which is
given by Equations (1-1) and (1-2). Two clock ticks will bring this value through
the two delays in the state path of the transformed machine, thereby providing ¢,(¢)
as the state part of the input to the combinational logic at time /. Thus
q)2t+1(v)) = g, (1) attime ¢’ = 2t+1(v).

It remains to be shown that the input part i (1") of the status of v at time
t' = 21+ 1(v) correctly corresponds to the outputs of other machines in S'. We
consider four cases depending upon the type of interconnection between the
machines in the original, semisystolic system S. In each case, we assume that (2-1)
has been established for all machines in 8’ for times before ¢/ = 2¢+/(v), and show
that it holds for an arbitrary machine v at time ¢’.

W=y In the seniisystolic system S, machine w is a Moore machine. The
output of the combinational logic in machine w at time 7 —1 is given by
Equation (1-1) as o (1) = X (g,((=1). i, (=1). In S, a portion of
this value is provided as part of the input / (1) to machine v at ¢. By the
inductive hypothesis, at time 2(r—1) +/(w) in the new sysicm S', the
values i (r—1) and ¢, (1—1) are the inputs to w. The combinational
logic which implements)\W is the same for both systems, and thus in the
new system, o (¢) must be the value produced as the output of the
combinationai logic at time 2(¢— D4 /(w) which cquals 1'=2 since
[(v) = [(w). But in this system, the portion of o (1) that gocs to

machine v must go through two delins. Thus it mrnves as input to

e boeee vl e 17,

Y

A sa..sa-

AREA-EFFICIENT VLSI COMPUTATION

As in the previous case, machine w is a Moore machine v+ S whose
combinational logic ccmputes o, (¢) at time (-1, a por«n of which
forms part of i,(¢). Since /(v) = [(w)—1, at time 2t +/(w)=2 = ¢'-1,
the inductive hypothesis states that the machine w in S’ similarly
computes o (¢). This data from w goes through one delay on its way to
v, so machine v correctly gets this data as input at time ¢’.

Again a portion of the output o (¢) from a Moore machine w forms part
of i (¢) in the semisystolic system S. In §’, it is computed as the output
of the combinational logic in w at time 2r+/(w)—2 = t'-3 since
[(v) = I(w)+1. This time the data goes through three delays, so once
again machine v gets the same input as it would at time ¢ in the original
system S. ‘

In this case, machine w is a Mealy machine, which. means that in the
original system S, the output o () is dependent on the inputs at time ¢
instead of ¢t~1 as is the case with Moore machines. ,This value is given
by Equation (1-2) as o0, (1) = X (q,(0). i (). A portion of o (r) is
provided as part of / (¢). By the inductive hypothesis, the combinational
logic in machine w in the systolic system S’ gets g, () and / (¢) as its
inputs at time 27+ /(w) which equals (/-1 since /(v) = /(w)+1. The
output o (¢) from the combinational logic goes through one delay, thus
providing input to v at time ¢/.

This case analysis completes the proof of Lemma 2-1. O

Figure 2-4 shows a labeling for the system from Figure 1-8 that satisfies the

conditions of the Systolic Conversion Lemma. Each Moore or Mealy machine has

been labeled with /(v) so that the conditions of the Systolic Conversion Lemma are

satisfied. The transformed systolic system will have a response time which is double

in terms of clock ticks. In the original semisystolic system, however, signals must

ripple the length of the system. in a single clock period. In the systolic system the

signals ripple only through a single machine. The performance of the systolic

system is better, therefore. because the clock period of the semisystolic system is

many times longer.

Tauble 2-3 shows the transtormation in tbholar foom, The vertical axis is the

e
VO TN

Sdodok ol adada o

-
..AJAJA‘

e

a2 e

PHESTRUCIURE OF SYSTOLETSYSIEMS 27
(o] 1 2 3 vd
Host

1;72“_3f=:>9<:>5

Figure 2-4: A labeling for the system from Figure 1-8 that
satisfies the conditions of the Systolic Con\ersion Lemma.

time ¢’ in .the systolic system S, and the horizontal axis is /(v). The entries of the
table give the value of 7 in the semisystolic system S that a machine v with label /(v)
simulates in the systolic system S’ at time ¢/. Thus, for example, at time 17 in system
S’, a machine v with label 3 has status 5,(7) because 17 = 2-7+3. In system S’ the
value iﬁput to v is possibly dependent on the outputs of machines with label 2 at
times 14 and 16, machines with label 3 at time 15, and machines with label 4 at time

16.

Table 2-5: Comparison of timingsin S and S’ (! = 2t1+1(v)).

-5 -4 -3 -2 -1 0 1 2 3 &4 5
1 8 7 6 5 4 3
12 8 - 7 6 5 4
13 9 8 7 8 5 4
14 9 8 7 8 5.
15 10 9 8 7 6 5
16 10 9 8 7 6
17 11 10 9 8 7 6
18- 11 10 9 8 7

The state of a transformed machine goes through an extra deluy from the time

i is output fiom the combinatiomal Togie untid it is once aeain impat,. Thus there are

VT T WY

«Q

8 . AREA-EFFICIENT VLSI COMPUTATION

-wo distinct portions of the state of a new machine, and two clock ticks a2 required
in the transformed system to simulate one in the old. Even thc:ugh there is
multidirectional communication in the system, the host sees only this slight timing
change. All inputs to a machine arrive at precisely the right instant.

The two stages of machine state form two equivalence classes of computation
in the new system, which leads to a halving of dedicated throughput and a doubling
of response time. By multiplexing the host’s interactions between two independent
tasks, however, the throughput of S’ can be made identical to that of S in terms of
clock ticks. Thus, in terms of clock cycles, the penalty for the conversion is minimal.
But since rippling is eliminated, the advantage of the systolic implementation
accrues as the system size grows. |

In terms of the PLA implementations of Moore and Mealy machines given in
Figures 1-6 and 1-7, the extra delays can be implemented with additional registers.
Since area of the combinational logic typically dwarfs the area of registers, the
overhead for this conversion is minimal. For implemehtations of finite-state

automata where most of the state is static and only a few state variables are operated

on in a clock cycle, it may not be reasonable to keep two equivalence classes of

computation in the system. Instead, the static memory can be clocked every other
clock tick, and a delay added to the state output. The throughput will, of course, be
halved.

2.3 Design Implications of the Systolic Conversion Lemma

If the stated conditions of Lemma 2-1 are satisfied, a semisystolic system can
be transformed into a systolic system. From an engineering point of view, it is
important to know how to design semisystolic systems that satistv the conditions.
This section provides a three-step design procedure that produces machine graphs
that can be labeled so that the Systolic Conversion Lemma can be applicd. The
the rems of this section arsd the tesults oF Section 21 consititte 2 Do ol ks that

will be need forcerodic sdesmthm desien i Chapier 3.

b . .3

4
L

- - e e e —— — . + I

THESTRUCTURE OF SYSTOLIC SYSIEMS ‘ 29

The three-step design orocedure explored in this section <3S with a systolic
system that performs som: important piece of the desired .omputadon. The
processors in this systolic system are then augmented with Moore and Mealy
machines whose interconnections follow those in the standard processor graph,
which yields an intermediate semisystolic system. Finally, the Systolic Conversion
Lemma is applied to the intermediate system to produce a systolic system whose
processor graph is the standard processor graph of the original system.

We now investigate how the intermediate semisystolic system can be designed
so that the conditions of the Systolic Conversion Lemma are satisfied. But first, we

define the form of this system more precisely.

Definition: Let S be a systolic system with machine graph G and
standard processor graph H. A semisystolic system S’ with machine
graph G’ and processor mapping @ from G’ to the same processor graph
H is an augmented sysiolic sysiem based on S if

¢ Gis a subgraph of G,
o @ when restricted to the set of Mealy machines is one-to-one,
e ifv—w= inG' then dv = Gw.

The first requirement of this definition says that S’ indeed augments S be:ause the
machine graph of the new system subsumes the machine graph of the old, and the
second precludes two Mealy machines from belonging to the same processor. The
third condition says that a Mealy machine whose output goes to a Moore machine
must belong to the same processor as that Moore machine. A Mealy output can go
to a Mealy machine in another processor, however.

The next theorem provides a basis for the three-step design procedure. It
shows how the semisystolic system [rom the second step can be designed as an
augmented systolic svstem in such a way that the third step. applicanion of the
Systolic Conversion femma, will alwayvs succeed. The labeling #1(0v) in the
stitemant of the theorem o the hetehit ol @ a becadeh-foec poomne foreat of the

precessor eraph £t roots i the set U,

30 AREA-EFFICIENT VLSI COMPUTATION

Theorem 2-2: Let S be a systolic system with machine graph G, and
let 4 be the mapping from G '0 the standard processor graph H. Let U
be an arbitrary set of processors in A, and define 4 (8v) for a processor 8v
in A to be the length of the shortest path from v to any element of U.

Suppose S' is an augmented system based on S with machine graph
G' and mapping 4’ from G' to H such that v — w — only if
h(8'v) = h(8'w)—1. Then there exists a purely systolic system S” with
processor graph H whose tehavior is the same as the augmented system
S’. The response time of S” is twice that of S', the throughput is the
same, and the dedicated throughput is halved.

Proof. Any labeling of vertices which is given by the height of a vertex in a
breadth-first spanning forest of an undirected graph satisfies the property that the
label of two adjacent vertices differs by at most one. Label each Moore machine in
S’ with /(v) = h(8'v)—-h(0’host) and each Mealy machine with
[(v) = h(8'v)— h(8'host)—1. The label of the host is zero. Since v = w implies v
and w are either mapped to the same processor or adjacent processors in H, the first
itemized condition of the Systolic Conversion Lemma holds. [n the first case
v =w, and in the latter either v =_wor v = _w. If v = w = , then because S’ is
augmented, 2(8'v) = h(8'w) and v —_w. On the other hand, if v — w — , by
construction v — _w. All the conditions of the Systolic Conversion Lemma are
satisfied. O

[ntuitively, the Mealy edges go -outward from the processors in U. A dual

result applies when all Mealy edges go inward toward U.

THE STRLCTURE OF SYSTOLK SYSTEMS 31

Theorem 2-3: Let 3 He a systolic system with machine graph G, and
let 8 be the mapping from1 G to the standard processor graph H. Let U
be an arbitrary set of processors in H, and define 4 (8v) for a processor §v
in A to be the length of the shortest path from @v to any processor in U.

Suppose S’ is an augmented system based on S with machine graph
G' and mapping 4’ from G' to H such that v — w — only if
h(@'v) = h(8'w)+1. Then there exists a systolic system S” with
processor graph A whose behavior'is the same as the augmented system
S’. The response time of S” is twice that of S/, the throughput is the
same, and the dedicated throughput is halved.

Figure 1-8 (page 17) shows how a systolic array can be augmented with Mealy logic
that implements a broadcast from the host. The Mealy edges in the machine graph
of this system go outward from the host in a breadth-first manner, and therefore
Theorem 2-2 can be applied to remove the Mealy rippling. In fact, any systolic
system can be augmented to implement broadcasting from the host so that
Theorem 2-2 is satisfied. The Broadcast Corollary is the single most useful

consequence of the Systolic Conversion Lemma.

Corollary 2-4: (Broadcast Corollary.) Let S be a systolic system with
standard processor graph A, and suppose that S is modified so that at any
time ¢ the host may broadcast a symbol which is provided as part of the
input /(¢) to each machine in S. Then there exists a systolic system s'
with processor graph A whose behavior is the same as S with broadcast.
The response time of S/ is twice that of S, the throughput is the same, and
the dedicated throughput is halved.

Proof. Augment S with Mealy machines whose outputs run outward from the host
in a breadth-first spanning tree. The Mealy edges so constructed satisfy the
constraint that if v — w — , then the depth of v in the spanning tree is one less than
the-depth of w. Let the set U in Theorem 2-2 contain only the host, and apply the
theorem. O

Corollaries can he obwiined tor other glebal computations, but for most

appdications it s cien conoteh o dosen the parncolar Ny et o rme cithe

3? AREA-EFFICIENT VLSI CCMPUTATION

outward or inward in a breadth-first manner and then simply apply The~i:m 2-2 or

Theorem 2-3. We shall see many examples in Chapter 3.

2.4 The Reset Theorem

The final result of this chapter is a theorem about resetting the states and
outputs of machines in a semisystolic system to predefined values.. The transformed
system will itself be a semisystolic system which, if the original system satisfied the
conditions of the Systolic Conversion Lemma, will itself satisfy the conditions. The
reason for gearing this result toward semisystolic systems instead of systolic systems
is so that it can be applied independently from the Systolic Conversion Lemma and
its consequential theorems.

In order to prove the Reset Theorem, we shall need a result about semisystolic
systems which is similar to one that Cole [9] proved for multidimensional systolic
arrays.

Lemma 2-5: Let S be a semisystolic system with machine graph G.
Define h(v) to be the shortest weighted path in G from the host to v
where Moore edges have weight 1 and Mealy edges have weight 0. Then
the state of machine v at time ¢ is independent from any of the outputs of
the host at times f, [, +1,..., ¢ ift < gy+h(v).

Proof. Definitions (1-1) and (1-2) show that the state of any machine v at time ¢ is
determined by its inputs at time s—1. Thus the state of v at time ¢ is only affected
by the state of a machine w at time ¢—1 if there exists a (possibly empty) set of
machines . Uy, ... 4 such that cither w = u, — u, —» ... — v or
Wl = U= ... =V The label /1 (v) of machine v must satisfy A(v) < h(w)+1
since there is at most one Moore edge between the two machines. Since the host is
labeled 0. any machine whose state is affected in one time step by the output from
the host at ime 7 can have label at most 1. in two time steps at most 2, ete. By

indnetion. the wtate at e 7 of o machine v with label A0 cannot be allecied by

ARSIy

Y R)

p

POy

ot Bl iln

THESTRUCTURE OF SYSTOLK >YSTEMS : 33

the output of the host at time -, unless ¢ > fy+/(v). Therefore. if 1 < (+ A (v), the
outputs of the host at tim s ty+1, ly+2, ..., ¢ cannot affect the state of v at
time . O

A reset operation can be added to a semisystolic system by making minor
changes to the Mealy and Moore machines in the system. Each machine is given an
additional RESET input which affects the state and output of the machine in the
following way. If the boolean signal RESET goes high at time ¢, the state of a
machine v assumes a predefined value §, at time /+1. If v is a Moore machine, the
output also assumes a predefined value 6, at time ¢+ 1. Butif it is a Mealy machine,
the output assumes the value 6, at time ¢.

For the PLA implementation of Moore and Mealy machines, thé addition of
reset logic to a machine can be accomplished either by making changes to the PLA
logic or through the use of a two-input multiplexor. The multiplexor takes two
inputs X and Y and a boolean control signal, and produces either X or Y depending
on the value of the control signal, that is, the output is
(XA—-RESET) V (YARESET). The state and output of a machine can thus be reset
by feeding the normal outputs from the PLA into X, the predefined values into Y,
and then letting the RESET signal control the multiplexor. _

Suppose it is desired that all machines in a semisystolic system be reser on
command from the host. If the system is systolic, a global RESET signal can be
broadcast to all machines from the host. and then Corollary 2-4 applied to yield a
new systolic system which implements the broadcast. [the system is not systolic,
however. this approucihr will not work unless cli Mealy logic in the system goes the
same direction us the broadcast. The ne. .eorem shows. however, that ahy
semisystolic system can be reset. Furthermore, 1w, penaity necd be paid in terms of

clock ticks as it might be if Corollary 2-4 were applied.

o4 : AREA-EFFICIENT VLSI CCMrUTATION

Theorem 2-6: (Reset Theorem.) Let € be a semisystolic syst ™ with
machine’ graph G and standard processor graph H, and suppos.e every
machine v in S has a RESET input. Then there exists another semisys-
tolic system S’ with machine graph G’ and processor graph A whose
behavior is the same as S with global reset. The response time,
throughput, and dedicated throughput of S’ are all the same as S, and any
labeling for G based on the Systolic Conversion Lemma can be extended
to G'.

Sketch of proof. Consider H as a symmetric directed graph, and assign weights
irom {0, 1} to the edges of H according to the following rule.

e if v= win G, then give (v, dw) a weight of 1,

e if v — win G, then give (v, §w) a weight of 0, and

e if (v, w) ¢ G but(w, v) € G, then give (v, dw) a weight of 1.

Each vertex v of H is now labeled with 2(@v), which is defined as the minimum
weighted path from @v to fhost. Observe that since the edge weights are from
{0, 1}, the labels of two adjacent vartices differ by at most one.

The global reset command is implemented by including machines in S’ that,
with each step of the clock, propagate a wavefront of RESET's along a breadth-first
spanning tree of A rooted at the host. Along Moore edges the wavefront is clocked
by new Moore machines. Along Mealy edges, new Mealy machines allow the
wavefront to ripple. If the spanning tree goes along a a Mealy edge in the reverse
direction, however, a new Moore machine clocks the wavefront. The idea is that in
the system S some of the machines cannot be affected by normal operation of the
host until some time after the host signals RESET. In the system S’, the
corresponding machines aré reset later.

When the wavefront reaches a machine in S/, it rescts the state and output of
the machine. Since time 7+ A (@v) clapses between the time ¢ that the Liost sighals
RESET and the time the wavefront reaches a machine v, however, the the state and

cutputsof the machine cannat he reset o g and 6 totead s the, mpstbe rect o
N)

o ﬂ Y ﬂﬁ oy

IHE STRUCTURE OF SYSTQLIC SYSTEMS 35

the values of the state and cutput of v in the original system S at time (+ A (dv).
Lemma 2-5 guarantees that these values are well-defined because the weighted
graph in the lemma is a subgraph of the weighted graph considered here. Thus we
may define § (#(4v)) and 6,(#(4v)) as the state and output that machine v has in
system S at time A4 (@v)) if RESET is signaled by the host at time 0, and be assured
that c}v(h (8v)) and 6 (h(8v)) are well-defined constants which may be computed in
advance. In summary, the state and output of each machine v in S’ are reset by the
wavefront to §,(4(dv)) and 6, (h(8v)) at time ¢+~ (Gv).

There is one more wrinkle in the construction. The wavefront partitions those
machines that have been influenced by a global reset from those that have not. We
must ensure, however, that the computations performed by a machine before it is
reset do not influence any machines that have already been reset. The problem
arises when a Moore machine v is reset at time ¢+ @v. and its outputs go to a
machine w which is reset at time (+8w = (+@v—1 Then the output
o,(t+@v—1) from v, which is computed before v is reset, is provided as input to w
at time ¢+ @v—one clock tick after w is reset. A computation that does not refiect
the reset dirties one that does.

On the next time step after being reset, the machine w expects part of 6,(8v)as
input instead of part of o (t+8v—1). This problem is easily corrected with a
multiplexor that, on the time step after a reset. provides the proper inputs to w from
those Moore machines that are then being reset. No change is needed for inputs
from Mealy machines because their outputs reflect the reset value immediately.

Any labeling of vertices in the original system S that satisfies the conditions of
the Systolic Conversion Lemma can be extended to the new system S’. New Mealy
machines are required to propagate the global RESET along alrendy enisting Mealy
edges from already existing Mealy machines. but no othier new Mealy machines are
needed. New Moore muachines are needed o propagate the wavefiont along

evisting Moore vdico and backswards adong Nealy edves oy 1o Soaby niachine.,

e a A e

AR AR AR |
[
‘

38 AREA-EFFICIENT VI.SI CUMPUTATION
{

Tirc new machines do not disrupt the processor graph, and since rhe only new
! {caly edges follow existing Mealy edges, a labeling for machines in S can always be

extended to machinesin 8. O

"<
-4

CHAPTER 3

A Selection of Systolic Algorithms

3.1 Introduction

This chapter contains applications of the tools developed in Chapter 2. The
second section expands on the systolic priority queue result of Section 1.2. Systolic
counters are the subject of Section 3.3, and pattern matching and language
recognition are the focus of Section 3.4. All of the algorithms in this chapter can be
designed without using the results of the previous chapter, but with the Systolic
Conversion Lemma, the Broadcast Corollary (Corollary 2-4), and the Reset
Theorem, the construction of these systems is greatly simplified. Each algorithm is
designed in the space of semisystolic systems in such a way that it can be converted
into an efficient systolic system.

Although the “bag of tricks” accumulated in Chapter 2 apply to arbitrary
processor graphs, the algorithms contained in this chapter are based primarily on
trees and one- or two-dimensional arrays. These graphs have the important
property that they require little area when iaid out in the plane—an important
consideration for implementation in silicon, Part [I cou;siders the layout problem in
more detail. |

Another property of the algorithms developed in this chapter is that they all
provide quick response to the host. The wtility of a subsystem can often be

e vred better Iy response oo reguee © thaa byt theeaehear, Clioed

S o b LA

v Yy Y-

e

P PP

T

28 AREA-EFFICIENT VLSI COMIPUTATION

techniques such as pipelining improve throughput at the expense of r¢=:onse time.
‘The advantage of the techniques developed in the previous chapter is that through-
put is improved without sacrificing response. Subsystems for which throughput has
been optumized without rega_rd to response time perform well only when the
granularity of problem size is sufficiently large. The applicability of the subsystem
is thereby restricted to large n’umerical or signal-processing calculations which,
though interesting in their own right (see Chapter 4), are hardly the bottlenecks in
most computing environments.

Many of the subsystems developed in this chapter give real-time response to a
service request by the host, that is, only a constant number of clock ticks are

- required to satisfy the request from the point of view of the host. For the example

of the priority queue of Section 1.2, thé INSERT and EXTRACTMIN operations gave
real-time response. [f all the operations of a subsystem give real-time response, we

 shall call it a real-time subsystem.

3.2 Priority Queues and Search Trees

In this section we construct a systolic priority queue similar to that of
Section 1.2, but rather than designing the systolic array explicitly, we design a
semisystolic array and apply the theorems from the previous chapter. We then
extend this result to show how a binary search tree can be built in hardware which
has logarithmic time response to FIND op'erations and pipelined performance.
Finally, we present the systolic multiqueue. a device which provides real-time

priority queue operations on several queues and dynamically shares processors

“among the queues. Incidental to the design of these algorithms, our “Lag of tricks™

will be enfarged.

'@
-

PUPOTE re

———————— ~ T T

A SELECTION OF S\ STOLIC ALGORITHMS 39
3.2.1 Simple Priority Qutes

It is not hard to make a linearly connected systolic ;nay with broadcasting
from the host implement a real-time priority queue. Queue items are kept sorted
left-to-right in the array. The host talks to the left end of the array where the
smallest item is kept. To insert an item a into the queue, the host broadcasts
“INSERT(a)” to all the processors. Each processor compares a with the item it
contains, those processors with larger items shift their data to the right, and the item
drops into the right place. To remove the minimum element of the queue, the host
broadcasts “EXTRACTMIN,” and all processors shift their data left with the min-
imum element going to the host. Each' of thes¢ operations can be implemented
within one clock cycle. Therefore, the Broadcast Corollary converts this semisystolic
system to a systolic system whose response time is only two clock cycles. The
labeling /(v) of a processor corresponds to the left-to-right index of the processc;r.

This implementation of a real-time priority queue should be compared with
the one from Section 1.2. With the machinery of Chapter 2, it is easy to verify that
this implementation actually works. The one from Section 1.2 works as well, but
proving it is somewhat more difficult. Furthermore, the priority queue from this
sec_tion is more easily embellished. For example, several kinds of deletions can be
implemented. The simplest is the deletion of the smallest element greater than a
broadcast item. The processors all listen to the broadcast item, and those with larger
items shift them left. '

Only slightly more involved is a priority qucue that deletes an item i it is

present. The problem is that the processors to the right of where the broadcast item

belongs do not know whether the item is actually in the system. This obstacle can
be overcome by changing the Mealy machines that implement the broadcast so that
they perform a priority broadcast. In this modification of the standard broadceast

scheme, what is broadcast o processors further down the tine can be alfected by

o o_. 4

v

-— —w - —~—- L RN N S ocs came Sate st oo - ~

-0 AREA-EFFICIENT VISI CGVPUTATION

nrocessors closer to the host. The idc is that each Mealy machine fror1 left to right
checks to see whether it has the it n: to be deleted. If so, it deletes the item and
passes a message to thé processors down the line that they should shift their data left
toward the host. If the item in a processor is smaller, however, the deletion request
is forwarded down the line. Finally, if the item in a processor is the first one larger
than the broadcast item, which means that the item to be deleted is not in the queue,
the processor passes a message to this effect down the line. Since the direction of all
Mealy outputs is away from the host, this augmented systolic system can be
converted into a systolic system by virtue of Theorem 2-2.

A deficiency of the delete-if-present design is that the host cannot immediately
know whether the item was actually present. In fact a simple information theoretic
argument can show that no systolic array can give real-time response to this
membership query. It is possible to report this exception at some later time,
however.

Sometimes it is useful to be able to retrieve the elements that overflow when
the queue gets full. By connecting the host to both ends of the array, the overflow
can be retrieved. The broadcast in the simple priority queue can be implemented by
Mealy machines whose outputs go from the ends of the array toward the middle.
The priority broadcast in the delete-if-present priority queue can also be made to
work {rom both ends.

3.2.2 Variable-Length Keys

A common characteristic of the real-time priority queues discussed so far is
that the sort key for an item. fits inside one processor. In order for the priority

queues to be systolic, the key size must be constant, independent of the system size.

The next priority gueue we construct works for variable-length keys which are made

up of characters and called words, Words are compared using standard left-to-right

i craphie onder.

' .)
PO PUY Y A4 aan 4

TR

A SELECTION CF SYSTOLIC A« GORITHMS 4]

The priority queue is a linearly connected systolic array wirh priority broadcast.
Each processor contains one character of a word, and a special symbol “#” is used
1o separate the words. The words are each stored with the most-significant character
closest to the host. The response time for inserting a new word into the priority
queue is linear in the length of the wordand is constant for each character. The
same is true for EXTRACTMIN—constant for each character in the minimum word.
A DELETE operation can also be implemented with similar performance charac-
teristics. Thus the priority queue gives real-time response for each character.

The EXTRACTMIN operation is straightforward to implement. The host
broadcasts a shift-left to all processors and retrieves a character of the minimum
word. The host repeats the broadcast until it receives a “#” to indicate the end of
the word.

The INSERT operation is more involved. Each processor contains an upper
register and a lower register. The items in the priority queue are kept in the upper
registers. The host broadcasts each character in the word to be inserted most-
significant (leftmost) character first. When the first character is broadcast, each
DIOCESSOr copies its upper register into its lower register énd shifts it right. As each
subsequent character is broadcast, the array of lower-register values is shifted right.
Within each word in the priority queue, a marker is propagated from left to right to
determine which character in the word is to be compared with the broadcast
character. |

After the first character of the word to be inserted has been broadcust, each
word in the qucue can be lubeled with S, M, or L depending on whether it is
smaller, the same size, or larger than the word being broadcust. With each
subsequent broadcast.. some of the words labeled M will be distinguished as either S
or L. Observe, however, that the processors containing the first word labeled L
which are before the muarked processor cannot know that their word has been

fabeted UL thoveh precessors down the Tine cans The aed od proce o o this word

ST B Wy

7 AREA-EFFICIENT VLSI COMPUTATION

cee:es the broadeast character into its upper register. [f a word with an M label is
~<iabeled with L after a broadcast, the characters before the marked processor will
have the same prefix as the broadcast word which is also the same as the previous
first word labeled L. When the “#” is finally broadcast to indicate the end of the
inserted word, each processor to the right of the marked processor in the first word
labeled L copies its lower register into the upper. The upper registers now represent
the priority queue with the broadcast word inserted. By eliminating the Mealy logic
which implements the priority broadcast, the system becomes systolic.

A real-time DELETE operation can also be implemented. For this operation,
the lower registers are shifted left instead of right, and the comparisons are
performed on the lower registers instead of the upper. When the broadcast is
complete, a suffix of the array of lower registers is copied into the upper registers.

3.2.3 Real-Time Order Statistics

The minimum of a dynamic set of linearly ordered elements with fixed-length
keys is not the only order statistic which can be determined by a real-time systolic
array. In fact, any set of order statistics can be maintained. For example, a systolic
array can maintain the minimum, median, and maximum of a dynamic set whose
operations include INSERT and DELETE.

The maximum of a set is easily maintained by a real-time priority queuc almost
identical to that of Section 3.2.1, except that the maximal element is kept next to the
host instead of the minimal element and the sense of comparisons is inverted. Both
maximum and minimum can be simultancously determined by using two priority
queues, one for minimum and one for maximum, and storing each element in both,
This scheme can be madificd, however, so that each element need only be stored
once.

lace the two prionity queues next W each other and consolidate corresponding

Provesors o asiig le procesor Gl the mow susteme cach of the oreinad prionn

o ' ﬁ

Ch gmecsn 4 e, na

A SELECTION OF SYSTOLIC Al GORITHMS 43

queues occupying a side of th.* vew systolic array. Let # be the number of items in
each queue, and notice that :.e | n/2] items farthest from the host in the min side
are duplicated by the | n/2] items nearest the host in the max side, and need not be
stored in the min side. Similarly, the [#/27 items farthest from the host in the max
side are duplicated by the [#/27 items nearest the host in the min side, and also
need not be stored. Thus the systolic array can be considered to hold a “U” of items
where the base of the U is about [n/2] processors from the host.

When an item is inserted, it takes its place on one side of the queue or the
other, and causes the other elements on that side of the queue to slide down. If
insertion of a new item should cause one side to have two more items than the other,
however, the last item on that side slides across rather than down so that balance
between the sides is maintained.. Similarly, if deletion of an item would cause the
queue to 2o out of balance, the last item on a side goes across. Only the processor
that contains the base of the U makes the balance decision, but all processors must
have this logic because any could be the base. One simple scheme only keeps a
count of whether zero, one, or two items are currently stored in a processor.

By placing the base of the U at the front of the array instead of somewhere in
the middle, the median of the items in the queue can be determined in constant
time. The first processor keeps a count of the imbalance in the two halves, and if
necessary, an item is transferred from one side to the other. By using a combination
of the two techniquecs, all three order statistics, minimum, median, and maximum,
can be simultaneously muintained. The elements in the :ﬁ;\"stolic array form a W, and
the host is connected to the processor at the top. This scheme can be generalized to
keep any constant number of arbitrary order statistics in a linearly connected systolic
array. Using a collection of arrays all of which talk to the host, any number of order

statistics can be maintained with real-time response,

'@
TSP PRI

4 AREA-EFFICIENT VLS COMPUIATION
3.2.4 Search Trees

Thus far in this chapter we have concentrated on linearly conrected systolic
arrays which are among the simpler systolic structures. The systolic arrays from the
previous sections which manipulate dynamic sets of objects do not perform one very
important operation: MEMBER. The operation MEMBER(key) determines whether
an item Wi.th key _key is in the set. It is not hard to show with an information
theoretic argument that any systolic structure based on a graph whose vertex degrees
are bounded by a constant cannot give a response to this query in less than
iogarithmic time. In this section, we show that logarithinic response can be achieved
with systolic search trees. The operation of these trees is pipelined to provide a
dedicated throughput of one operation for every two cycles and by multiplexing, a
throughput of one operation per cycle can be achieved.

One scheme for implementing the operations INSERT, DELETE, and MEMBER
is illustrated in Figure 3-1. The processors in the systolic array are also leaves of a
systolic tree. Each processor contains one item of the dynamic set, and the items are
kept in sorted order left to right. The host talks to the root of the tree, and
broadcasts the commands to the processors along the edges of the tree. Removing

the broadcast from this semisystolic system yields a systolic system with the

1

L

nerformance attributes stated above.

Figure 3-1: The tree-like s stolic structure that perfonms Mi st R with Ol) response.

When the host requiest an INSERT operation to be performad. the processors

"-4

w—

™

A SELECTION OF SYSOLIC Al CORITHMS | 45

at the leaves determine wheter to shift night or stay fixed, and the new item drops
into place in the sorted array. For a DELETE operation, the prccessors again decide
whether to shift right or left. Unfortunately, if the element is not in the queue, the
processors making the decision as to whether to shift their contents left cannot be
aware of this eventuality. We shall return to this issue shortly.

When a MEMBER operation is performed, the processor that contains the item
propagates TRUE up the tree. The other processors propagate FALSE. Each
internal node of the tree propagates the logical OR of its sons up to its father. After
lgn time, the response to the MEMBER query is received by the host. In the
meantime, if the host has been able to proceed without the response from the query,
it is able to perform more operations.

The problem with deletion can be resolved using the systolic tree. Rather than
deleting an object initially, a command is broadcast to mark it for deletion. A
message stating whether the marking was successful is propagated up the tree.
When it arrives at the root, a broadcast to garbage collect the item is made. With
little additional complexity, this broadcast can be made in parallel with the
troadcasts by the host. The systolic structure will never become too full with items
marked for deletion because at most Ig 2 items out of # can be so marked.

It is possible to use a complete binary tree instead of the “array-tree,” and to
store the items in the internal nodes of the tree as well as the leaves. To understand
how this might be done, consider enveloping all the branches of the tree with a
single curve as shown in Figure 3-2. Each internal node contains three items, and
the curve gives the order each of the three items is visited in u tree walk. For
example, the first item in node 2 is visiwed after the first item in node 1, the sceond
item in node 2 is visited after the third item in node 4, and the third item in node 2 is
visited after the third item in node 5. When an item o be inserted is broadcast, each
node determines which way to shift the elements along the lincar urdering of the

Curve.

I R
- 1

v

SN 2 aon om0 can s _mme sang

A

Y ——— o ———y Wy

r—

“

49 AREA-EFFICIENT VLESICCNIPLTATION

Figure 3-2: The linear ordering of a combined preorder, inorder, and postorder tree walk.

The MEMBER operation seems to cause a problem, however, because a given
item may find itself at any level in the tree. If no precautions are taken, different
responses may collide on their way up the tree. This difficulty can be avoided by
making use of the fact that all the leaves of the tree are the same distance from the
root. Mealy logic forwards the response of each internal node to the broadcast
MEMBER operation down to the leaves of the tree. On the subsequent Ign time
steps, the responses propagate back up to the root in a single wavefront with no
possiblility of collision with responses from other MEMBER operations. Since the
Mealy logic goes in the same direction as the broadcast from the root, they can both
be removed to make a systolic implementation. ‘

In either the tree or combined array-tree scheme, the MEMBER operation gives
logarithmic response. The INSERT and DELETE operations, however, give real-time
response, and thus the host could proceed without waiting if either of these

operations were performed.

PPPIPI T

A SELECTION OF SYSTOLIC / LGORITHMS 47
3.2.5 The Systolic Multiqueue

Suppose a computer system includes several of the simple priority queues from
Section 3.2.1. Whatever the size of each, the capacity of one might be exceeded
while most of the other queues are empty. This section presents a device that
manages several priority queues which share a joint capacity. For any priority
queue Q, the systolic multiqueue can perform EXTRACTMIN(Q) and INSERT(Q, a)
with real-time response.

Figure 3-3 illustrates the organization of the systolic multiqueue. Each of the
queues managed by this device requires a systolic-array priority queue with
overflow. The host accesses any of these short systolic arrays in the normal manner,
but it can access only one at a time. When a systolic array overflows, the overflow
element travels through a systolic switching network to a large systolic search tree
which is shared by all the queues. The item, with the queue number to which it
belongs prepended to its key, is then inserted into the systolic tree which is shared
by all the queues.

Besides the INSERT operation, the systolic search tree is able to remove the
smallest member of any queue. This variation on EXTRACTMIN is easily imple-
mented using the search-tree ideas from Section 3.2.4. The response from this
operat:on will be 21ga if the number of items that can be stored in the tree is #, but
another operation can be started every two cycles.*

~ Euch of the systolic arrays holds (Ign +1g/m)/2 items, and performs operations
on behalf of the host und on behalf of the interconnection netwark alternately, each
operation requiring two cycles. Whenever the minimum clement is removed from
one of the arrays, a retrieval request goes through the interconnection network and

into the systolic search tree to remove the smallest item which overflowed from that

Tt e e v teo pavabcae cle o ol computaton 1 e relic se ol ree e e

ey [Cag amcbe e BN cbed e,

w

-8 AREA-EFFICIENT VLSI COMPUTATION

To Host Computer
Ao

4)

Systelic . || 1Tt OO :
Arrays - —]] - || -
/ 0/ 0/ 0/ 0/ 08]
Switching Network
Systolic
Search
Tree

Figure 3-3: The systolic multiqueue.

queue. Items retrieved from the search tree travel back through the switching

network and are inserted into the appropriate queue. Since the host may be

performing insertions as well, their use of the systolic arrays must be multiplexed.

.“ The round trip time from retrieval reguest to insertion of an item back into the
F systolic array is 2(lgn.+lg'm).
1 The basic idea beliind the operation of the systolic multiqueue is that each
svstolic artay caches the smaller items in its queue. The host may attempt to exhaust
‘ the systolic airay by oevecuting e +1gm)/2 ExtraciMers swhich require
[
o

L D

PUBCITN o

Lo a4 gL

P PR—

™

.,f.—vfm--y

ASELECTION OF SYSTOLIC Al GORITHMS 49

2(lgn+1gm) cycles. But thir is exactly the response time required to satisiV the
retrieval resulting from the ‘i,st EXTRACTMIN, and thus this icem will be inserted
into the systolic array in time to satisfy the ((Ign +Igm)/2)+ 1st EXTRACTMIN
request. Moreover, the interconnection network and systolic search tree are full of a
continuing stream of items which will satisfy all subsequent requests on that
particular queue. It doesn’t matter whether the host accesses different queues
either. Each systolic array will always have the correct smallest item in it whenever
the host performs an EXTRACTMIN on that queue.

The number of processors in the systolic arrays and interconnection network is
O(mlgn). If the size of the systolic search tree is doubled. only O(m) processors
need be added to the systolic arrays. Systolic arrays with fifty processors could
handle any practicable value of a.

3.3 Counters

The marker propagation used in Section 3.2.2 can be implemented by a simple
shift register with exactly one bit on at any time. By connecting one end of the shift
register to the cther so that the marker cycles, a ring counter is created. Rather than
having a long connection from one end of this systolic device to the other, the
counter can be folded back on itself to form a U which can be embedded in a
linearly connected array.

[f a ring counter has n stages, it counts modulc 7. Every n cycles the marker
passes the host. {t is not difficult to custeoniize a médulo n ring coiinter so that it can
count modulo m for any m that is at most n. One way is to modify the
[m/27 processor to act as the base of the U. This chunge could be made of™line,
but it is also possible to guickly sct the modulus 1o any one of a constant number of
values on-line by using the Reset Theorem (Theorem 2-6).

The number system which a ring counter uses is ensentiadly unary, and this the

Loavdeore erowss proportons e coth e modedes IS oo e o ek s e

4
| A

Py S e -~ w7 = g T —w

36 AREA-EFFICIENT VLSI COMPUTATION

i:o:lular counter using the binary rumber system? The answer is yes. We present
~ue here which is based on the carry~save adder [32]. This systolic-artay device can
reduce the sum of three binary numbers to the sum of two. Suppose at time ¢ the
processors in the array hold three n-bit numbers x(¢), y(¢), and z(¢). Processor i
holds the ith bit x(¢) of x, the ithe bit y(¢) of y is provided as input to Processor i
from Processor / —1, and z(¢) is another input whose source will be discussed later.

Each processor computes the two-bit sum.
x(t+1) + 2y, ,(t+]) = x() + y(0) + z(1). (3-1)

That x(z+1)+y(z+1) equals x(r)+y(r)+z(¢) can be seen by multiplying both
sides of (3~1) by 2 and summing over /. The high-order bit Y 41(t+1) of the result
is forwarded to Processor i+1, and the low-order bit x, +1(t+ 1) remains in
Processor i. Thus the processors are ready to perform another carry-save addition in
one time step. |

The systolic binary counter is essentially a carry-save adder with some
modifications. All values of z(7) are zero except for Processor 0 which is next to the
host and has a z input of one. After each cycle, therefore, the sum
x(t+1)+y(t+1) is equal to x(¢)+y(t)+1. By throwing away the carry output of
the processor containing the high-order bit, the sum is taken mod 2". Mealy logic
running back to the host determines whether the counter is at zero. The following

theorem will be used to design this Mealy logic.

Theorem 3-1: Let S be a linearly connected systolic array with n
processors, and let L be a regular language over the sentences of some
alphabet . Number cuch processor in order so that the processor
farthest from the host is lubeled 1 and the one closest to the host n, and
suppose that Processor / provides a symbol g, from X as an unconnected
output. Then S can be augmented with Mcaly logic which runs from
Processor 7 0 the host and determines for the host whether the sequence
a.i=1....nisasentence inL.

P

” fvv.m——.

ASELECTION OF SYSTOLIC AL GORITHMS 51

Proof The language . can be accepted by a finite automaton®
M = (K, 2, 8, g5 F) where « is a finite, nonempty set of states, Z is the alphabet,
§ is the transition function that maps K X Z to K| g, € X is the initial state, and
F C K is the set of final states. The i/th Mealy machine in the augmented system
takes as input g; from Processor / as well as a state symbol g, _, from Processor /—1.
It performs § on these two values and provides g, as output to Processor /+1.
Processor 1 has the initial state g, as input, and the output g, from Processor n goes
to the host. By induction g, € F if and only if the sequence g, is a sentence in L. O

Suppose each processor in the counter provides the two-bit sum x(£)+ y (/) as
an unconnected output. The regular language (1*20*)+0* describes the outputs
(high-order to low-order) when the counter is at zero modulo 2". Applying first
Theorem 3-1 and then Theorem 2-3 yields a systolic-array, modulo 2", binary
counter that tells when it is at zero.

It is relatively straightforward to make this counter run modulo m for any m
which is at most 2. The ith bit of —m is stored in Processor i, and is carry-save
added to x,(¢)+y(¢) to produce the unconnected output. As before, a regular
language can recognize when the outputs form zero modulo 2".

Sometimes it would be useful to be able to have the counter stop counting and
resume later. The systolic counter now adds one unconditionally every two clock
cvcles. (Two, because a consequence of the Systolic Conversion Lemma was used to
construct the counter.) The host can control whether the counter counts by having
it set the = input on Processor 0 to one or zero. [f it is zero, the counter will continue
to operate with each clock cycle. but will add zero. The carry-save additions will

continue, but the sum of x and y will rcmain the same.

PR wane constrnction works i Y s a0 rond s asie imn e atomaton, o Ier-

B e b o ot s s bond o ec e U e e e

P SRS Y -

O

(9]

AREA-EFFICIENT VLSI CC MPUTATION

Our last counter is a binary ug -down counter.’ Two counters of the kind just
uescribed form the upper and lower sides of a systolic array. To count up, one is
added to the upper counter and zero to the lower. To count down, zero is added to
the upper and one to the lower. The count does not change if zero is added to both.
Mealy logic based on Theorem 3-1 tests to see whether the carry-save difference of

the numbers stored in the two sides is zero.

3.4 Pattern Matching and Language Recognition

Among the applications of systolic arrays found in the literature, the problem
of real-time language recognition has been addressed by several, notably Cole [9]
and Foster and Kung [12]. Cole was the first to address the real-time aspect of
language recoginition by iterative arrays of finite automata. In this section, two
results of Cole are duplicated, and a variation on the systolic pattern matcher of
Foster and Kung is presented.

The first problem due to Cole is the real-time recognition of palindromes,
strings w such that w = w® where w® is the reverse of w. The ith character of a
palindrome, for i = 1,...,[n/2] mﬁst be the same as the n—i+ 1st character.
Cole constructs a systolic array which is supplied characters from a string, and for
each character tells immediately whether the string input up to that point is a
palindrome. Whereas Cole constructs the systolic array explicitly, we are able to use
the results of Chapter 2. | .

The host talks to one end of the systolic array, and like the priority queue and
binary counter, the characters in the systolic array form a U. Characters enter on
one side of the U and move down. When a character goes beyond the base of the U,

it takes a permanent position on the other side so that the number of characters on

f .
"Conbore [s ek pendenty deined s ol up downcoanter diat arfonms 1 host shen i is

al e,

.-J

i P

T

Te

T

ASELECTION OF SY>1OLIC AL GORITHMS 53

each side is the same plus o1 .ni1us one. Thus if n characters ¢f a string have been
input, Processor i, fori = 1,. .., [n/2], contains the ith and n — i + Ist characters of
the string. [t is a simple matter to compare the two characters in each processor and
use fdealy logic which runs back to the host to answer whether the string is a
palindrome. The Reset Theorem can also be applied to make the systolic array
ready for another string immediately, something which Cole’s device does not do.

The other problem considered by Cole is the real-time recognition of strings of
the form ww, a language which is not context-free. A systolic array that can
recognize this set of strings is only slightly more complicated. Like the systolic array
which maintains the minimum, median, maximum of a set, each processor contains
four characters which form a W in the systolic array.

Characters are input into one end of the top of the W and come back up the
corresponding U. Then they go back down the other U and find their permanent
places on the other end of the W as in the palindrome recognizer. The two bases of
the U's are kept the same heigit by'transferring a character from one U to the other
every two clock cycles. The processors compare the corresponding characters of the
two U’s, and Mealy logic determines whether the halves match.

The fabrication in nMOS of Foster and Kung's systolic pattern matcher

verified the hypothesis that systolic algorithms make for high-performance and

easily designed integrated circuits. A systolic array holds the pattern and éompares
it with a string. The pattern may contain a special character “7"" which matches any
character of the string. As the string is input, the systolic array produces a string of
zeroes and ones indicating where the pattern matched the string. Their pattern
matcher has very high throughput—one string character per bit comparison—but
the result bit corresponding to a given character of the file is delayed somewhat
from the time the character is input. This delay is propertional to the sum of the
length of the pu‘ucrn and the number o bits per character.

[he systohie pattern matcher proposed here uses a ~omewhat different model

.',.4

A

-4 AREA-EFFICIENT VLSI COMPUTATION

Hecause we take the number of bits in a character as a constant rather taan as a free
variable independent of the length of the pattern. But whereas the bo.iean string of
outputs from Foster and Kung's pattern matcher is delayed in proportion to the
number of characters in the pattern, the pattern matcher here provides a response
after one character comparison.

The array is loaded with the pattern so that the last character of the pattern is
nearest the host. As characters from the host are input, they shift down in the array.
Mealy logic running back to the host performs the comparisons between the
corresponding string characters and pattern characters; the wild card “?”* presents no
spevial difficulty. The throughput of this pattern matcher is one character
comparison per cycle, before the semisystolic system is converted to be systolic.
Using Foster and Kung’s idea of pipelining the character comparisons, a throughput
of a bit comparison per cycle can be obtained with a response time proportional to
the number of bits per character.

The pattern matching problem above can be solved in terms of transition
diagrams of nondeterministic finite-state automata. A NFSA that recognizes a
particular pattern can be built out of n+1 states if the pattern has n characters (see
Figure 3~4). It contains an initial state and a state for each character in the pattern,
the last character corresponding to the final state of the NFSA. A transition arc
labeled “?" (all characters) goes from the initial state to itself. Transistion arcs
iabeled with characters in the pattern go sequentially from one state to the next.
This NFSA can be converted directly into a semisystolic array by letting the states
be one-bit processors and letting the transition arcs be wires between processors
gated on the logical AND of the state bit and a compurisot: of the label -and a
broadcast symbol. By broadcasting from the final state, the host can sce immedi-
ately whether the string up to this point is accepted. The Broadcust Corollary can be
st to remove the broadeasting.,

Phe discctconvession of oy NESN mitean ineerrnted omomt was propercd by

9

Y

P

B
= VI LAY SNy . Pr e

A n At mt A mn o an . S o Sin oen cau

A SELECTION OF SYSTOLIC ALLGORITHMS 35

Figure 3-4: Any string ending with “ab%d"” is recognized by this NFSA.

Floyd and Ullman [11], but they do not attempt to make the implementation
systolic. Using the slicing technique from Part I (obtained independently) and the
McNaughton-Yamada algorithm [27] which converts a regular expression into an
NFSA, they show that any language described by a regular expression of length n
can be recognized by a linear area circuit.

A constant-response systolic implementation of an NFSA can sometimes be
obtained by letting the host broadcast along a minimum spanning tree originating at
the final states, and then removing the broadcast. Sufficient conditions on the
transition diagram of an NFSA so that this will work are:

o all ¢-transitions must go in the same direction as the broadcast,
o the fan-in and fan-out from a state must be bounded by a constant.

Weaker requirements may suffice, and these conditions do not give any intuition as
regards which regular languages are recognizable in real-time. By implementing
fan-out as a tree, the second constraint can be eliminated if logarithmic-time
recognition is satisfactory. Since one cycle of a semisystolic system with n
processors can always be simulated by n cycles of a similar systolic system, one
interpretation of Floyd and Ullman’s result is that a language described by a regular
expression of length n can be recognized by a linear area systolic system whose
response is n cycles. It remains to classify regular languages in terms of the response
time of a systolic implementation. In all likelihood, response time will interact

strongly with area.

L

'4

CHAPTER 4

Matrix Computations on Systolic Arrays’

4.1 Introduction

Systolic arrays are well-suited to matrix computations. In this chapter, we
show that linearly connected systolic arrays can perform matrix-vector multipli-
cation, solve triangular systems of linear equations, and compute convolutions,
discrete Fourier transforms, and finite impuise response filters. Two-dimensional
meshes conveniently compute matrix multiplication and the LU-decomposition of a
matrix. For these last two problems, it turns out that hexagonally mesh-connected or
hex-ccnnected processors are more natural than the standard, orthogonally mesh-
connected processors, and that almost exactly the same systolic array can be used for
both. For all these problems, connections to the host occur only on the boundary of
the particular systolic array.

The size of each of the systolic array networks is dependent only on the band
width of the band matrix to be processed, and is independent of the length of the
band. Thus a fixed-size systolic array can pipeline band matrices with arbitrarily
long bands. The pipelining aspect of the systolic system is most clfective for band

matrices with long buands, of course, but since any matrix can be considered to be a

.
Fhe resalts moabie chanter w ore e rined jointhy vty adviso = 1 F Rae. divd sere onemally

I ;'thd 1l lll].

. — e — —— —

—T

MATRIN COMPUTATIONS ON SYSTOLIC ARRAYS 57

band matrix with the widest-possible band, all results apply eci.lly well to dense
matrices.

Matrix computations allow a flexibility not seen in the results of the previous
chapter. In general, reponse time is not as important for these problems as
throughput. The host provides input and retrieves output, but rarely if ever does it
alter the data provided to a subsystem as a consequence of a particular output value.
And indeed, the various rows or columns of a matrix are usually independent, and
thus only a predetermined order of matrix input is required, but it need not be any
particular order.

The host as described in Chapter 1 placed more severe constraints on the
systolic system in that it could influence the data provided to the systolic system as a
result of an output from the system. When throughput is being optimized, however,
each connection to the systolic system can be considered independent, and data does
not reenter the system. If the system were considered to have multiple independent
hosts which could be labeled differently, the results of Chapter 2 could be used to
design systolic arrays for these problems. The flow of data for matrix computations
on systolic arrays is so straightforward, however, that using the design space of
semisystolic systems would only complicate the description of these results. For
these reasons, only the systolic implementation is presented.

Another feature of the problems considered in this chapter is the similarity of
their computations on a standard uniprocessor. Each contains somewhere a loop
that evaluates the inner product of two vectors:

FOR i « 1 70 n DO
InnerProduct « InnerProduct + x[i] « y[i]

The repeated multiply-and-add operation in this loop is called the inner-product
step, and it forms the basis for a processing element which we now describe. The
inner-product-sicp processor has three inputs X, Y, and Z and three outputs X', Y/,

and 2. Tuble 4-1 describes the relationship between the inputs and outputs. As is

P

(W]
0

AREA-EFFICIENT VLSICCMPLUTATION

-—

Tuble 4-1: Definition of the inner-product-step processor.

Inputs Outputs
X Y z x! Y’ Z
X y z x y Z+xy

the case with all systolic processors, the inner-product-étep processor is a Moore
machine. Thus when several of these processors are interconnected, the changing
output of one will not interfere with the input to another. Figure 4-2 shows two
geometries that will be used in this chapter for the inner-product-step processor. In
type (a) geometry, which will be used in Section 4.2 for matrix-vector computations,
the Y and Z connections go hdrizonta]ly in opposite directions, whereas the X
connections are vertical. Type (b) geometry, which will be used in Section 4.3, has
the X and Y connections going down to the right and left, respectively, and the Z

connection going up.

@ | e
- X z
| X Y
Ze | Z,
Y— 5
/

l'x’. ' Z

Figure 4-2: Two geometries for the inner-product-step processor.

4
»

PP G P P S T S {

MATRIX COMPUTATIONS ON SYSTOLIC ARRAYS 59

4.2 Matrix-Vector Computations

In this section, we show how matrix-vector computations can be performed in
a pipelined fashion on linearly connected systolic arrays. Multiplication of a vector
by a matrix is the topic of Section 4.2.1.; The systolic array which performs this
computation is the basis of the other algorithms in this section. For example,
triangular linear systems of equations can be solved with a similar systolic array (se2
Section 4.2.2). Several applications of the matrix-vector muitipiication are given in
Section 4.2.3.

- 4,2.1 Matrix-Vector Multiplication

We first consider the problem of mul‘tiplying amatrix 4 = (q, j) with a vector
x = (x,...,x,)". The elements in the product y = (3,,....»,) can be computed

by the following recurrences.

woo=0o, |
YED = B 4 x,, ' (4-1)
v, = yn+D),

Let A be an n-by-n band matrix with band width w = p+g—1 and let x be a
vector of length n. The following equation shows an instance of thc problem when

p=2andgq = 3.

J
.

L
Iy

'@
AL e awaiA ava 4 Mo aia_ s s

[B .

60 AREA-EFFICIENT VLSI COVPUTATION

P

— — e — —
ay, 3, X, Y
Q 3w 37 3 o X2 Y2
a, a, 3, 3, X, Ys

8y 3y 3, 3, X, - Ya (4_2)

0 . . .

e —r e s e
A X Y

e

The matrix-vector product can be computed by pipelining the elements of x and y
through a systolic array which consists of w linearly connected inner-product-step
processors. The systolic array that solves the instance of the band matrix-vector
multiplication problem in Equation (4-2) has four inner-product-step processors
and is illustrated in Figure 4~3.

The overall scheme of the computation can be viewed as follows. The y,
which are initially zero, are move to the left while the x, are move to the right and
the a; g0 down. (For the general problem of compuung Ax+d where
d =(,,..., dn)T. each y, should be initialfzed as d.) Each ¥, accumulates all its
terms, namely @, _,X, 5, @, X, 4, X and a; ;x| before it leaves the
network. Figure 4-4 illustrates the first seven steps in the operation of the systolic
u}ray. Although half the processors in the systolic array are idle at any given time, it
is casy to coalesce adjacent processors so that only w/2 processois are used for a
general band matrix with band width w. Alternatively, if the number of processors

is odd. the outputs from the ends of the svstolic array can be piped buck through the

-‘d

o

T ——
-

————> X3

MATRIN COMPUTATIONS ON SYSTOLIC ARRAYS 6l
: CE Ll :
[} |
] [}
']
: 3y aq :
! |
] i
i)
| dan)
| 2 I
[} [}
} }
] i
1 an an |
] V4
1
|
1
t
~

It

ol o B I

Figure 4-3: The linearly connected systolic array that performs
matrix-vector multiplication.

systolic array to make use of the processors which operate on the off-beat. There are
many other variations based on arranging the matrix and vector elements in a
different order.

If the bandwidth of 4 is w = p+g—1, after w clock ticks the components of
the product y = A4x exit from the left-end processor at the rate of one every two
units of time. Therefore, the systolic network computes all the n components of y in
2n+ w time units, as compared to the O(wn) time needed for the straightforward
sequential algorithm on a uniprocessor computer. .

The number of processors required by this systolic algorithm can sometimes be
reduced if more is known about the structure of the matrix. For example, the
matrices arising from a set of finite differences or finite elements approximations to
differential equations are usually sparse band matrices which have nonzero entries
in only a few diaconals of the matrix. In this case some of the processors in the

systolic array will always receive zero values for the @ . By introducing preper

= =l | 2. e

-..4

-

Loy

r v ~ . — — T i |
E (2 AREA-EFFICIENT VLSI COAMPUTA IION ‘
‘. v
}
o -+ L& r3 =3 "

[=] - = = |
} m B
F" -
:r ’
! -~ e e 9 |e)
; ! = Et £Y
e .

) ey =] Ve =l %2

2 = 1, A | 21

a2

‘ K3 Y1 (4= Y2 |9
b 3 Ft'
: = X ay; _:% % an ;q
L PARK S Y2 | =] Y3

o ‘4 = > i | 2

2

X2

Y2 ¢ Y3 Ya

£ £33
6 :L [l an [
X3

|
'3

X2

Figure 4~4: The operation of the linear systolic array in Figure 4-3.

delays between those processors that receive nonzero input, the number of proc-
essors required by the systolic array can be reduced to the number of diagonals
which contain nonzero entries. This variant is useful for performing iterative
methods involving sparse band matrices.

The systolic array for matrix-vector multiplication also works for dense n-by-n
matrices because these are simply band matrices with the maximum possible band
width. The advantage of defining the algorithms for band mutrices is that the

hardware requirements are proportionai to the width of the band. Furthermore, if

MATRIX COMPUTATIONS ON SaSTOLIC ARRAYS 63

the band width of a matrix is < large that it requires more precessors than a given
array provides, the matrix c 1. be decomposed into submatrices whose sizes match

the size of the hardware.

4.2.2 Triangular Linear Systems

The systolic array described above computes the matrix-vector product Ax.
The inverse problem is to solve for the vector x in the system of linear equations
Ax = b. This problem is often solved by using Gaussian eliminatior to factor the
matrix 4 into a lower triangular matrix L and an upper triangular matrix U, a
technique called LU-decomposition. (We shall see in Section 4.3.2 that a two-
dimensional systolic array can quickly compute the LU-decomposition.) After the
factorization the triangular linear.systems Ly = b and Ux = y must be solved.
This task is well-suited to linearly connected systolic arrays.

Let 4 = (q, j) be a nonsingular n-by-n lower® triangular band matrix, and let
b = (by,...,b,)" be given. The problem is to determine x = (x,,..., x,)" such
that Ax = b. The following recurrences show how the vector x is computed by a

technique known as forward substitution:

»w o=,
. 3
Xi = (bi"-":(i))/ -

Suppose that A is a band matrix with band width w = g. (See Figure 4-5 for
the case when ¢ = 4.) Then a systolic array similar to the one used tor bund matrix-
vecror multiplication can be used to solve the forward substitution recurrances.

(Ohserve the similarity of the defining recurrences (4-1) and (1-3) for these two

P aupper G bl s et b oo itan s foner e e linear asen,

chbont o e b i bends sl e Do sl B o s,

.'4

- —
o 6 AREA-EFFICIENT VLSI COMPUTATION -
b ';4
} n:gilems.) For the instance of this problem in Figure 4-5, the systolic array is]
t,own in Figure 4-6. |
- -
 — —— —r oty pom—- ——— '.
;(' ~ a, X, b, ;
; in 3n X2 b, 3
: 9 ﬁ 3, A3y Ay 0 Xy b,
p . 1. ,'4
| 2 e e X, — b, j
au au a" 3“ !' b‘ g
3 * : : J
L © . . .
E— 0 . . .
e p— b ———— hmanay- e
F ¢ A X b e

xr-

Figure 4~5: The band (lower) triangular linear system where g = 4.

Thé elements of y enter the Systolic array as zero and go leftward while the
elements of x, a, and & move as indicated in the figure. The processor represented
as a circle is not an inner-product-step processor. It performs the operation
x; (b= y,.)/a“.. Each y, accumulates inner-product terms as it moves through the
network, one term per processor. By the time y, reaches the division processor it has
the value g, x; +a,%,+ ... +a X1 and consequently, the x; output by this
processor will have the correct value (b,— y)/a,. Figure 4-7 gives “snapshots” of
the first seven steps in the operation of the systolic array. From the figure one can

check that the final values of Xys Xg0 X3, and x, are all correct.

29

With this systolic array an n-by-n band triangular linear system with band
width w = ¢ can be solved in 2n+g steps. As we have observed before, the
number of processors required by the array can be reduced to w/2 or the output can

be piped back through the array 1o achieve 100% utilization.

i e e =y T - - - o T W T T w ST we— = s = = = - . -
r. - R s =

MATRIN COMPUTATIONS ON $15TOLIC ARRAYS 63

\)
: agy as; :
]]
]]
t t
! ag !
1 t
} t
] t
: ay, I
1 PR
| g
:au Hy - =
! AT
= LI :
! s ' i
1 I]]
" PR | |
Bl B
: s t [} |
1

\
=<
=

= Y L:‘: t-—. B -
..... > 2 Xy e = ._-J =
¢
by
by
A
]
1
[}
{

-

Figure 4-6; The lincarly connected systolic array for soiving
’ the triangular linear system in Figure 45,

4.2.3 Variants of Matrix-Vector Multiplication

There are many important problems which can be formulated as matrix-vector
multplication problems and thus can be.solved rapidly by the systolic array of
Section 4.2.1. The problems of computing convolutions, finite impulse response
(FIR) filters, and the discrete Fourier transform (DFT) are such examples.

If a matrix has the property that the entries oﬁ any diagonal parallel to the
main diagonal are all the same. then the matrix is a Toeplitz matrix. The convolution

problem s simply the matmix-vector mudtphication where the matriv is o triangeular

'@
etd Ae o

‘-

ks

Py

<.

P

am e imamamamd

)

T ——

Figure 4=T7: 7

T — P —— p— p—

AREA-EFFICIENT VLSI COMPUTATION

Y1

Y2

LIt

It
T
v It

a
X,

Y2 Ys

B
Bt

Ys
an

[It
B
Wit

ay

I
I
kit

g

B It
It
Xx

Ya Ys

asy

I
1
Wit

Ys

F

LIt

Fhe operation of the linear systolic array in Figure 4-6.

MATRIN COMPU FATIONS ON SYSTOLIC ARRAYS 67

Toeplitz matrix (see Figure 4-8). A p-tap FIR filter can be viewed as a matrix-
vector multiplication where the matrix is an upper triangular Toeplitz matnx with
band width w = p. Figure 4-9 represents the computation of a 4-tap filter. An
n-point discrete Fourier transform is the matrix-vector multiplication in which the
(i, j)th entry of the matrix is o'~ -1), where w is a primitive nth root of unity.
(See Figure 4-10).

s, - REE b,]
a, a, X, b,
2, 3, a, 0 x, b,
s, 8, 8 a, X, - b,
3, 2 3, 3, 3 b %, b,
T SO [S — e e

P — = - C e e -

o

Figure 4~8: The convolution of vectors a and x.

Using a linearly connected systolic array of n processors, both the convolution
of two vectors of length n and the n-point discrete Fourier transform can be
computed in O(n) units of time, rather than O(nlgn) as required by the sequential
FFT algorithm. Observe that for the convolution and filter problems, each
processor has to receive an entry of the matrix only once. This entry can be shipped
to the processor through horizontal connections and stay in the processor during the

rest of the computation thus obviating the need for external vertical connections.

A

. N AREN-EFFICIENT VLS COMPUTATION
L . 3, 3, 33 3, X, Y,
(0
3, 3 3y 3, Xe Y2
3, a, 3, L Ys
3, 8, 3 3, X, p— Ye

Figure 4-9: A 4-tap FIR filter with coefficients a,, a,a, and a,,)

-

S S S RS [b, |
@ o o o X, b,
W @t W W Xy b,
o & @ T X, p— b,
@ « & Wt Xy b,

Figure 4-10: The discrete Fourier transform of vector x.

»1

MATRIN COMPLUTATIONS ON SYSTOLIC ARRAYS 69
4.3 Matrix Computations

Whereas the algorithms of the previous section were based on linearly
connected systolic arrays, we now consider algorithms for two-dimensional systolic
arrays. In Section 4.3.1 we show how two matrices can be muitiplied on a
hexagonally connected mesh of processors. Remarkably, this same systolic array
with only minor modifications (Section 4.3.2) can be used to compute the
LU-decomposition of a matrix. The building block of these systems is, as it was for
the algorithms of Section 4.2, the inner-product-step processor. For these problems,
however, the type (b) geometry for this processor shown in Figure 4-2 is appro-
priate.

4.3.1 Matrix Multiplication on a Hex-Connected Systolic Array

This section considers the problem of multiplying two n-by-n matrices. The

matrix product C = (¢,)of 4 = (alj) and B = (b‘.j) can be computed by the

i
following recurrences:

®» -

CU — 0,

k+1 — k

D = B yayb,, (44)
- (n+1

¢y = cU").

Let 4 and B be n-by-n band matrices with band widths w, and wy These

1

_recurrences can be evaluated by pipelining the clements of 4, B. and C through a

systolic array which consists of w ,wp hex-connected inner-product-step processors,

A systolic array thai computes the matrix product

v.-i

———— T T
-

y——

9 AREA-EFFICIENT VLSI COMPUTATION
—':n 8y 0— —;u By b, O— rﬁ.. € €3 € 0]
3 In a by bny b by Cy Cm Cp Cp
2, A Inp By ba by by by f— €y Sm C€p €y (4’5)
Vg by €ty Cam .
0 0 Q
- - - . —
A B Cc

is shown in Figure 4-11. The elements in the bands of 4, B, and C move through
the systolic network in three different directions. Each ¢ is initialized to zero as it
enters the network through the bottom boundaries. (For the more general problem
of computing AB+ D where D = (dij) is another band matrix, each € should be
initialized as dii') Each ¢ is able to accumulate all its terms before it leaves the
network through the upper boundaries. Figure 4-12 shows four steps in the
operation of this hexagonally connected systolic array. The data flow of this systolic
array can be studied more closely by making tranparencies of the band matrices
shown in the figures, and moving them over the network picture as described.

The multiplication of two n-by-n band matrices 4 and B whose band widths
are w, and wy can be performed in only 3n+min(w,, wp) time on w, wg hex-
connected processors. In any row or column of the network, only one out of every
three processors is active at any given time. Therefore, it is possible to use about
w /3 processors by coalescing adjacent processors.

Another way of making use of the processors on the off-beats is to multiplex
the systolic array as was mentioned in Section 2.2. Having several problem instances
to solve at one time is a situation that arises when a large problem instance can be
broken down into smaller instances which fit the size of the hardware. Matrix
multiplication can be decomposed by using the distributive law to express each of

the lurge n-by-n matrices as the sum of smaller band matrices which fit on the

r— et § N v 4 Ty v ———— . L - 7 Yy —vT —~—— Y J
s » 9 ® ® ® @ ® »
)
)
)
)
i
]
: — g .DK \
3 | \ \
§ \ \
; \)
.. \ £ b
- \ \
\ \
!
\ P , 3]
\ \ =
\ \ Q
\ A =}
\ o K} 2
o o (=8
\] .
\ H ol
\ 3 <« 5
\ 2]
\ o 1y E
\ '\ jeemmmcm—me=——e—- o
\ \ ' 4 =
RSP U WS - I 1 R 5 S 2 g
A Y 3 4 v r% n.\.\
\ L’ =
’ e =
€ mmm e L e’ x g o
hS P J v S |
/l , U <
w e - - e m m - = - o ————— -) X = <
q a <] " K o = 2
= U €mmmmmmmmmee oo 8 2 < .2
< “ 2 e
9 < =
P D e P % 8 E) 7 =
— < ¥ v o C L.z 1
] o P < 2
~— \\\ II .M z 4
2l ffemcrecec e e ——— (Y. R < D L D 7 S,
" < \. s a .r// § J m
e
. K S £
. -
) f €-—mmmmmmm e o - Foommmmmms F% |J€------eo—— -~ M 5 3
n ’ ' >
2 \ ' N e c e e e m :
Z, '
= ! &) <
- / Y Y — N
- , “ =
3, / :
- ’ F)
3 s / / s
: O / A ’ gt
(] \ ~ ’ oL
/
H.\. ’]
X / ’
d — / .du Fi
- 4 /
- / /
2 -
L]
v [4
t ® - N | 4 - - - L
A .r A ad ad B R ey Al . b P e a g .

- e : - T——— d 41
:]
o V2 AREA-EFFICIENT VLSI COMPUTATION p
|
L "
y N -
}j . 3
o '
. ’ ¢
b
[
F‘ >
;
- @ [
1
L‘~ p
it 1
b 4
»
1 1
o ’
X
° .
i E
Figure 4=12: The uperation of the hex-connccted systolic array in Figure 4-11.
L 4 ’
1
L .

v—"—v—-v..

~Td

re

~4 AREA-EFFICIENT VISI CCMPPUTATION

hardware. This decomposition also points up an advantage of the systol’c system for
inatrix multiplication proposed here. If the host computer system can diock transfer
the clements of the matrices to the systolic device, problem instances of size nw wp
can be handled by a systolic array of w,w, processors without interrupting the host.
A hardware design which required all data to be loaded into the device, on the other

hand, could only cope with problems of size w,, before interrupting the host.

4.3.2 LU-Decomposition on a Hex-Connected Systolic Array

The problem of factoring a matrix 4 into lower and upper triangular matrices
L and U is called LU-decomposition. The following equation shows the factorization

when A is a band matrix with p =4and q = 4.

_‘u‘n%‘n o— -.l] I-“n"'u“n“u o—
S 3p Uy 3 Iy { Ll 0 Upy Uy Upy Upy
I - L VI Uy Up U
8 S =l hlelel
" . o . (4-6)
a Q
L - . i -
A L u

—— —— - - ———

Once the L and U factors are known, it is relatively easy to invert 4 or solve the
linear system 4x = b. (We dealt with the latter problem in Section 4.2.2.) This
section describes a hex-connected systolic array for computing LU-decompositions.
The systolic algorithm proposed here assumes that the LU-decomposition can
be performed without pivoting, which is true, for example, when 4 is a symmetric
positive-definite, or an irreducible, diagonally domiuant matrix. The triangular
matrices L = ([ij) and U = (“,j) can then be evaluated according to the following

recurrences:

MATRIN COMPUTA LIONS GM SYSTOLIC ARRAYS 735
(D -
aj; = a,
W(k+l) - (k) -
a; = g’ + [, (ukj),
0 if i <k,
lik = 1 ifi =k,
agl’:)/ukk if i >k,
0 if k>,
u 1 = . -
g) fhs)

The evaluation of these recurrences can be pipelined on a systolic array of hex-
connected processors. A global view of this pipelined computation is shown in
Figure 4-13 for the LU-decomposition problem from Equation (4-6). The systolic
array in Figure 4~13 is constructed as follows. ‘All processors except for those on
the upper boundaries are inner-product-step processors which form exactly the
matrix multiplication network presented in Section 4.3.1. Of the processors on the
upper boundary, the one denoted by a circle is a division processor like the one
from Section 4.2.2. It forwards its input upward unchanged, but also computes the
reciprocal and outputs this down to the left. The other processors on the upper
boundaries are again inner-product-step processors, but their orientation is
changed: the ones on the upper left boundary are rotated 120 degrees clockwise;
the ones on the upper right boundary are rotated 120 degrees counterclockwise.

The flow of data on the systolic array is indicated by arrows in the figure. Asin
the hexagonal systolic array for matrix multiplication. each processor operates on
rcal data only once every three clock ticks. Figure 4-14 illustrates four steps in the
operation ot the systolie array. Notice that since A is a band niatrix with p = 4 and

1 . . 9
q = 4. when ag, enters the network. for example, 1t can be viewed as (/25’. In gencral
(k) 3

e ™ Y P . = . (33 < e ";])

for this network. @3y =@,y and @) s =a | owherel <A <iand 7> 2
Thare are several cqaivalent svstolic darrays that reflect ondy o changes 1o

the noesctl prese e thcwc o borcoampleothe cloment o8 ad Uem e

'
|

A,

e

———

AREA-EFFICIENT VL.SI CCMPUTATION

e yve—— yv - v - = -~ o— e = o 4

‘The hex-connecied systolic array for pipelining the LU-decomposition
of the band matrix in F'quation (4-6).

Figure 4-13:

e ...]

MATRIN COMPUTALIONS ON S1ETOLIC ARRAYS

un

t

a |t
‘ } o | "
. 1 0\

} ‘ o i}

3 2)
& - 42 -,

¢

ST\ <
t
-

77

; Iy -uy
_ 9
‘ a(‘l) ? ?
i 33 ~a >
? L
: N v
- } ?]
" o L
t aa f e
L] ® 4
d
‘.
.
E L
e e
. v
1
‘4 Figure 4=14: e operation of the hes-connected array in Figure 4-13. L4
: 9
e L
, k]
N e 4

- - - — —— Y T CEN A i

78 AREA-EFFICIENT VLSICOMPUTATION

e

v PEP———y v
-

MATRIN COMPUTA TTONS ON SYSTOLIC ARRAYS 79

retrieved as output in a number of different ways. Also, the —1 input to the
network can be changed to a +1 if the special processor at the top of the network
computes minus the reciprocal of its input. The techniques used in previous
sections to augment the processor utilization can of course be used.

If A is an n-by-n band matrix with band width w = p+¢q—1, a systolic array
having no more than pq hex-connected processors can compute the
LU-decompositicn of 4 in time 3n+min(p, q). If 4 is an n-by-n dense matrix,
then n? hex-connected processors can compute the L and U matrices in 4n clock
ticks. It is not to be forgotten that these complexities include [/0, control, and data
movement.

Since the matrix multiplication systolic array forms the largest part of the
LU-decomposition systolic array, both algorithms could easily be embodied in the
same physical device. Recall also that the systolic array that multiplied matrices
with vectors (Section 4.2.1) and the systolic array that solved triangular linear
systems (Section 4.2.2) could easily be built as the same device. This is due to the
similarity of the defining recurrences and the fact that the problems are in a sense

inverses.

—

————m— Aa

®
‘A V.

ST

T

PART II

3 AREA-EFFICIENT LAYOUTS

PO |

CHAPTER 5

Preliminaries

5.1 Introduction

The systolic algorithms investigated in Part I were based primarily on array and
tree interconnection schemes. That arrays can be embedded in the plane using little
area should come as no surprise. But how much area does a tree require? The next
few chapters will examine the problem in an abstract setting: _ “Given a graph,

produce an area-efficient layout.”

Figure 5-1: An O(nlgn) layout of a complete binary tree.

To illustrate the subtleties inherent in this problem, consider the problem of
laying out a complete binary tree of n = 2%k —1 vertices. Figure 5-1 shows an
obvious solution that requires O(n1gn) area—O(n) across the bottom times O(Ign)
height. Observe that as we ascend the tree from the leaves to the root, the number
of wires is halved from one level to the next, but the length of the wires doubles.
This means that the amount of wire devoted to each level of the tree is the same.
The recurrence that describes the area required by this layout is A(n) = 1 for

n =1 and

A

‘e

4 i

.1

M

Y

- v v . ad TR

PRELIMINARIES 83

An) = 2A(n/2]) + n/2

forn = 2k—1where k > 1.

Figure 5~2: The H-tree layout of a cbmplele binary tree.

There is a more efficient solution to this embedding problem. The so-called
H-tree layout [29] shown in Figure 5-2 requires only O(#n) area in spite of the fact
that relatively long wires are used towards the root of the tree. In this layout the
number of wires is halved from level to level as we ascend to the root, but the length
of the wires doubles only every two levels. Whereas the standard O(nlgn) layout
uses just one dimension for routing most of the wires, the H-tree makes better use of
both spatial dimensions. The recurrence describing the area required by the H-tree
is more complex than the previous one becatise of its nonlinear form: A(n) = 1 for

n =1, and

A(n) = 4A(n/4)) + 4V A(Ln/4]) +1

forn = 2-4%K—1 where k > 1

This recurrence can be solved by taking the square root of both sides of the
equation and rewriting it in terms of m the length of the edge of the layout.
The new recurrence is a simple divide-and-conquer recurrence, which has colution

O(v71) for the edge of the layout.

wo W hat Alind e o Ol B d g e

¢4 AREA-EFFICIENT VLSI CCMPUTATION

The remainder of this chapter cciizains background material whicl. will be used
in later chapters. Section 5.2 contai:a, a formulation of the VLSI layout model, and
Section 5.3 gives the definition of a separator theorem. In Section 5.4 a nonlinear
recurrence equation is solved which describes the area of layouts generated by the

layout algorithm of Chapter 6.

5.2 The VLSI Model for Layouts

Before presenting a model for layouts, it is worthwhile to examine some of the
attributes of VLSI technologies. VLSI components—wires and transistors—are
constrained to lie in layers on a wafer of silicon. Because the number of layers is
small (usually under six), the size of a VLSI chip can be measured by the total area
of silicon used—the layers contributing to the ability of wires to cross. Every VLSI
fabrication process has a natural metric, the minimum feature size A, which is the
width of the narrowest wire that can be manufactured.® The smallest transistor that
can be manufactured is a square with edge A and area A2. Since a wire of length L
consumes A L area, it is not unusual for much of the area of a chip to be consumed
by wires.

Intuirively, the VLSI model should make one-to-one correspondences between

edges in the graph and data paths in the layout, and between vertices in the graph .

and processors in the layout. The mapping between edges and data paths seems
straightforward enough, but there are issues to be resolved in establishing a
correspondence between vertices and processors. One problem is that a vertex in a
graph muv have large degree, and yet on an integrated circuit, an arbitrarily large
number of wires cannot come together at a single point. There just isn’t enough
room. A sccond problem arises from the fact that a processor must cccupy nonzero

arca. What assumptions should be made about the size and shape of that area?

0 ‘ . . . :
Mead and Comwav 28] in Gt detine X to by hadd the width of the nanrewest manufoe tirable

WIHe.

rﬂv Pp———

P——

w— —— o

PRELIMINARIES 85

We resolve th:ese difficulties by restricting the discussioit to ¢.»..ses of graphs with
vertex degrees that are bourded by a constant, and by further ¢s.uming that vertices
require only a constant area of silicon. This assumption is similar to the one made in
Section 1.4 which helped ensure that combinational logic settled quickly. The
results of this part, however, can apply to more complex models than the systolic
model. For example, there is a simple transformation from an arbitrary graph to a
trivalent graph such that each vertex of the original graph is a block of the trivalent
graph. If processors in an alternative model can be decomposed in this way, the
results will apply. In another variant of the model several processors may be
connected by a single data path. By considering bipartite graphs—uvertices in one set
represent processors and those in the other represent data paths—many of the same
results hold.

Having resolved the graph-theoretic issues, we now turn to the modeling of the
layouts themselves. The VI.SI model proposed here is similar to that of Thompson
[41] in which wires have unit width and only a constant number (two) may cross at a
point. Vertices arc placed on a rectangular grid so that each lies within a grid
square. Edges run horizoantally and vertically, one per grid square, except that an
edge running horizontally may cross one running vertically.10

La:vouts that are designed with this model have the property that they are
sliceable. That is, a horizontal or vertical line can be used to bisect the layout, the
pieces can be moved apart, and the severed wires can be reconnected to realize the
original topology. Slicing can be used to generate new layouts from old ones. For
example, Figure 5-3 shows how slicing enables a new edge to be routed between
two existing vertices in a layout. Two horizontal and wwo vertical cuts are made

through the layout to expose the the vertices that are to be connected. (Actually,

O . . . ‘

106, that wirc ., do ot chanec often trom one Laver to another, inany wire-routing programs us¢ a
Vindoae o home [o e bt b all Bosizentadl, ranmies wirey o placsd o one bver and all
vorth el runerse v e on ane diet,

o

v

Y

v — B St i SRt R] LAl a0

&4 AREA-EFFICIENT VLSI COMPUTATION

] [] '
I 1 |]
+ + O+ + o+ o+ o+ o+ o+
\ \ 1) t 1
])] i
A S + 4+ o+ 4+ o+ o+ o+ o+ 4
L} [} 1 }
] 1] | }]
+ o+ 4+ o+ o+ o+ 4+ + 0+ 4+ o+ o+ o+ o+ 4
!
] !] 1 i
+ + + + +_ 4+ <+ e e 4-—-?---:--——!-i i
1])
- ‘----.A._E..]‘___._- . . .
inaniindies aliadind nli + i - == -r--?--?---;- T - =t -
1] 1] .) 1
[] '
+ + + 0+ + + o+ + o+ Hl+ o+ o+t +
an n —= —
+ + + + + + + + + + + + + + + +
1 1 1 1 H
'
1 ' 1) |
1
+ o+ _+ + + o+ o+ + +_ i1+t + 0+ + + +
ml . m:=il o
+ + 4+ o+ + 4 4+ + + + + + + + o+ o+
[} [} i i [}
4
+ + + o+ + + 0+ + + + 4+ o+ o+ o+ 14
!] I] t
1

Figure 5-3: Two horizontal and two vertical slices
are more than sufficient to route an edge.

two slices in one direction and one in the other always suffice.) The pieces are
separated by a gnd unit, the severed edges are reconnected across the gaps, and a
new edge that connects the vertices is run through the gaps. If the length in grid
units of the original layout was L and the width W, the new iayout has length at
most L +2 and width at most W+ 2. It should be noticed that the slices through the
layout must be straight—a staircase cut may require the pieces to be separated by

mgore than a single grid unit for a new edge to be routed.

5.3 Separator Theorems

Lipton and Tarjan [25] showed that any planar graph of n vertices can be
divided into two subgraphs of approximately the same size by removing only
O(V7T) vertices. Since the subgraphs are themselves planar, this separator theorem
provides a basis for exploiting the divide-and-conquer paradigm [1]. We shall find it
convenient to alter the definition of scparator theorem that Lipton and Tarjan give.

Whereas they biseet a graph by removing vertices. we shall remove edees. Sinee we

~—v- - A SN A
v T g 0

PRELIMINARIES 87

are principally concerned witl ctasses of graphs with bounded cdegree, the definition

we give is equivalent except <r the values of the constants in the definition.

Definition: Let S be a class of graphs closed under the subgraph
relation, that is, if G is an element of S, and G’ is a subgraph of G, then
G’ is also an element of S. An f(n)-separator theorem for S is a theorem
of the following form.

There exist constants & and ¢ where 0 < ag < 1/2 and
¢ > 0 such that if G is an n-vertex graph in §, then by
removing at most c¢gf(n) edges, G can be partitioned into
disjoint subgraphs G; and G, having an and (1—a)n vertices
respectively, where a sfax< l—as.u

The set of removed edges is called the cut ser of the bisection, and f(n) is
called the width of the bisection.

This definition is adequate for Lipton and Tarjan’s Vn -separator theorem because
the class of planar graphs is closed under the subgraph relation. But there are many
classes of graphs for which the same divide-and-conquer approach works, yet the
class is not closed under the subgraph relation. The notion of separability can be
extended by taking the closure of the original class of graphs with the subgraphs
postulated by the separator theorem. Using this interpretation of separability, it is
casy to show [24] that the class of trees has a 1-separator theorem. (The class of trees
is not closed under the subgraph relation, although the class of forests of trees is.)

We shall give additional separator theorems in Section 6.4.

1., o _ . 4 . .
Fhroughout this paper itis assumed without joss of generaliny that a 1§ chosen o permit an o

he anintecer. Hhus as amption is preterred over the uae of Hoor or ecthng functions becanse it will be
gsctul oy adentity the parpanlar salnes of a.md Becanse it maekes thie mahomnatcst fermata 2 siore
e ile,

o |

g

TH" s

RCIE

§S AREA-EFFICIENT VLSI COMPUTATION
5.4 A Nonlinear Recurrernce

Suppose S is a class of graphs for which an f(n)-separator thecrem has been
proved. In Chapter 6 we shall show how to lay out any graph in S. In this section
we investigate a nonlinear recurrence equation that will be used to relate f(n) to the
area of the layout.

Let A(1) be a positive constant, and let A(n) be defined on any integer n > 2
by

A(n) = max (VA(an)+ A((-a)n) + f(n))?, (5-1)

ag<a 5l—as
for some 0 < ag < 172.
Given a particular f(n), there are standard methods for solving such a
recurrence. We shall use a technique, however, that will enable us to solve this
recurrence for broad classes of f(n). We shall define a simpler function B(n), which

will be shown to have the property
A(n) < nB*(n) (5-2)

for all n. By providing an upper bound for B(n), it will be easy to use (5-2) to
bound A(n).
We define B(n)as \/A(1) forn = 1,and as

B(n) = max (B(an) + f(n)/vn)

assasl-—as
for n > 1. Property (5-2) holds for n = 1 by the definition of B(1). Making the

inductive assumption that it holds for values less than n,

PRELIMINARIES 89

A(n) < max (\"anBz(om)+(1—a)nBZ((1—a)n) ~i—f(n))2

as<agl-a;
< max (VanB*(an)+(1—a)nB*(an) + f(n)) (5-3)
ag<agl-ag
< maic (VnBX(an) + f(n))?
as<asl-ag
< mai(n (B(an) + f(n)/va)
ag<agl-ag
= nB(n).

Line (5-3) in this proof follows from the consideration of two cases. If
B(an) > B((1—-a)n) for the value of a that realizes the maximum, then (5-3) be
derived from the previous line by straightforward substitution of B(an) for
B((1—a)n). On the other hand, if B(an) < B((1—a)n), then substitution of
B((1—a)n) for B{an) followed by a change of variable of 1— a for a yields the
same result.

It remains to evaluate B(n) which, except for the maximization, is a simple

divide-and-conquer recurrence that can be solved by iteration. Thus

fin) | flaym | flagapn)

vn Vayn Vaga,n

B(n) =

Coo+ B(alaz...arn) (5-4)

where r < —]ogl_asnz each value a,, @y, ..., a, is the valuz of a that realizes the
maximum at each stage of the iteration; and the product a&, ..., equals 1/n.
Upper bounds for Equation (5-4) can be determined on the basis of suitable
assumptions about f(n). The upper bounds in Table 5-4 were determined by
evaluating this summation according to the indicated assumptions about f(n). The
fower bounds for A(n) were derived by defining a function C(n) that is similar to
B(n) but that provides the bound A(n) > nC(n).

To demonstrate the upper bound results for the third entry, i is inscificient

- L A - i

S0 AREA-EFFICIENT VLSTCOMPUTATION

Table 5-4: Solutions of Recurrence (5-1).

S(n) B(n) A(n)
o(n%), q<1/2 0(1) O(In)
o(Vnlgkn), k>0 O(lg* *1n) o(n 1g¥* *n)
Q(n?), ¢>1/2t O(f(m/Vn) 0(s2(n))

t5ec text for an explanation of this entry.

assume only that f(n) = Q(n9) for some g > 1/2 as the table implies. In addition
the function f(n)/vn must be well-behaved in the following sense.
Definition: A function g(n) is said to satisfy Regularity Condition Cl

if there exist positive constants ¢, and 8, such that ¢; < 1, 8, < 1/2, and
g(Bn) < ¢ g(n) for all sufficiently large n and all B in the range

B <B=1-B)

Making the assuinption that f{#»%/ v satisfies Condition C1 with 8, = ag, we can

now prove the third line of the wble. For large n and a < a) < 1—ag, we have

Sa,n) f(n)
< q)
Vaun .o vV

-

and in general tor each term in Equation (5-4)

flaja,. . apn) < ckf(")
vVaga, apn R

Substituting these tums in Fguation (5-4) gives the bound

S

sin) < . (1+ o+ cl2 + ...) -+ constant,
]

which is O(/()/VI) since ¢, < 1. The constant arises from the finite number of

values that are notsafticient]s daree accordine to the regulerity condition,

G

WRELIMINARIES 91

We have just shown that (Fe third entry in the table holds i f{n)/ Vi sadsfics
Condition C1. What can be deduced from a weaker assumption? Suppose, for

example, that we only assume that f(n)/v# is monotonically nondecreasing, that is

Sflan) < Sf(n)
N

forall n > 2 and all « in the range ag < a < 1—a. Since there are only O(lgn)

terms in the summation (5-4), it follows that B(n) = O((f(n)lgn)/vn) and

An) = O(fz(n)lgzn). A factor of lgzn in area is paid because monotonicity is a
weaker constraint than Regularity Condition Cl on the well-behavedness of
fm)/vn,

The layout construction of the following section will need to assume that A(n)

is itself well-behave d according to a different regularity condition.

Definition: A function g(n) is said to satisfy Regularity Condition C2
if there exist positive constants ¢, and B, such that 8, < 172 and
g(Bn)>c,gn)forall n > 2and for all B in the range 8, < B < 1-4,.

The qualification “for all n > 2” in this definition scems to be stronger than the
piirase “for all sufficiently lurge n™ which was used in the definition of Regularity
Condition C1. If all the values of g(n) are positive, however, the two qualifications
are equivalent—although the values for the constants may bé different.

Condition C2 is always satisfied by the solutions of A(#) shown in the first two
lines of Table 3-4, but not necessarily by that in the thivd line. To guarantee that
A{n) satistics Condition C2 in this instance, it is sufficient to assumc that f(n) itself
satisfics Condition C2 in addition to the previous Eissummion Mt
S(n)/ Vi satisties C1.

The reader should be aware that most of the functions a0
theorem will indeed satisfy these regularity conditions. A\~

conditions are satisled by all functions of the form en !

-A123 318 AREA-EFFICIENT YLSI COMPUTATION(U> CARNEGIE-MELLON UNIV 272 -
PITTSBURGH PR DEPT OF COMPUTER SCIENCE C E LEISERSON S
OCT 81 CMU-CS-82-188 F33615-78-C-1554 et o7

‘ L

UNCLRSSIFIED

ot b e 3
th A Wi n, Qo s i MR e i O Rt etegt S SR hh
e e o o h e e Ve memm. el

‘]
z S
b
el g
L g28 W25 ST, . «
|O T L §
= u L f22 '~.‘-
= u ., W=
B e [i20
“m Il %
— m“ 1.8
=
HLzs s we
- MICROCOPY RESOLUTION TEST CHART
- NATIONAL BUREAU OF STANDARDS-1963-A
Y — -
.
! :
o T T T T s T e T T T Y T T

o 9 AREA-EFFICIENT VLSI COMPUTATION
such that ¢ and q are positive. Simil:v regularity conditions are assum:d elsewhere

ia the literature (e.g. 1], [4], and [6] :n order to determine the asymptotic behavior
of general complexity functions.

CHAPTER 6

A Layout Algorithm

6.1 Introduction

The main contribution of this chapter is an algorithm which, given a separator
theorem for a class of graphs, can lay out any graph in the class. First, however,
some results regarding the areas and aspect ratios of layouts are proved in
Section 6.2. Section 6.3 presents the layout construction. Among the corollaries of
this result are that an a_rbitrary binary tree with n vertices can be laid out in linear

area, and planar graphs can be laid out in O(nlg2n) area. In Section 6.5 an

implementation of the layout algorithm is presented which is based on the

UNION-FIND algorithm analyzed by Tarjan [40], and it is shown that the time

required for maintaining the representation of a layout is nearly linear.

6.2 Areas and Aspect Ratios

The size and shape of a rectangle are uniquely determined by its /length L and
its width W, where we shall assume that L > W > 0. But there is another
coordinate space for specifying sizes and shapes of rectangles—area and aspect ratio.
Everyone is familiar with area and knows that the area can be defined as the product
L W. The aspect ratio o is defined as the quantity W/L, which is at most one.

Given the area and aspect ratio of a rectangle, its length and width are given by
—_—
L=vyA/e and W = e A.

93

.
- TR S
v e e e
T

L. SR

7

TV

P VW)

o
..
Ve
S
.
.»f_’.'
O
|
e
SO
s .
-’

1&..

‘-

L aT e T T e e o m R m A A e m e a e aa m ar e oa a e o e e o

L gl e gt ol T GhEAN)
[Y B A S AL

SO SR WiV A g S S SR PR

Suppose a graph has a VLSI Liyout of area 4 and aspect ratio ¢ It is natural
12 ask whether there are other layouts of the graph that have different dimensions
but similar area. The following theorem shows that a long and skinny layout can be
made into a square layout (aspect ratio of one) by paying only a constant factor

increase in area.

Theorem 6-1: If the bounding rectangle of a given layout has area
A, then there exists a topologically equivalent layout that can be enclosed
in a square whose area is at most 34.

Proof. Let the length and width of the original layout be integers L and W. If
L < 3W, then a square with side L satisfies the constraints of the theorem. Now
suppose L > 3W. The layout can be sliced in several places and “folded” like a
roadmap with the severed wires connected around the corners. Figure 6-1 shows a
square with side s = L\/§7 1 in which a rectangle has been folded. This rectangle is
the longest rectangle of width W that can be folded into the square, so if we can
prove that the length of this rectangle is at least L, then we will have demonstrated

that the original layout can also be folded to fit in the square.

__ 3
C —
= ol
E —

Figure 6-1: A Jayout can be “folded” to fit into a square.

Let & = | s/] be the number of picces into which this longest rectangle of

R

o

a e, ety R N .
' ettt T,

. oLt ' . . .
, e B e -maste

o WPEPUN el Wl Wil § plls

AR -, ,“_' .,') el
= #'A‘-—‘- VO

)
4

aoa s aaad

Y

TN e S

A LAYOUT ALGORITHM 95

width W has been folded. T.'c rectangle is made up of two long pieces and k —2
short pieces. Since L > 3W inplies s > 3W, the short pieces inust be at least s/3
grid units long, and the long pieces must have length at least 2s/3. Thus the total
length of the folded rectangle is at least (k—2) s/3 + 2(2s/3) = s(k+2)/3.

Because k is the largest number of pieces of width W that can be folded into
the square, it follows that k +1 pieces of width W will not fit. Therefore, the length
s of the side of the square must be strictly less than W(k + 1), which means

s < Wk+1) -1
By definition of s, the quantity (s+ 1)? must be strictly larger than 34, and hence
LW < (s+D2 -1 = s(s+2).
Substituting for s,

ILW < s(Wk+1)-1+42)
= s(Wk+1)+1)
< sW(k+2)

since W > 1. Cancelling W from both sides and dividing by three yields
L < s(k+2)/3. But the righthand side of this inequality is the value that we earlier
demonstrated was less than or equal to the total length of the folded rectangle. Thus
L is less than this total length, which was to be proved.}2 O

Can one “unfold” a square layout to make it arbitrarily long and skinny
without paying a large increase in area? Not always, and a unit square layout
provides the counterexample. If we insist that the side of the square be large, the
answer is still no. For example, we showed in the introduction that an n-leaf

complete binary tree can be laid out in O(n) area. But in Section 7.2, we shall prove

2 . . : - -
121 should be mentioned that the worst case is achicved when a one-by-tive rectangle is folded
into a three-by-three square.

e SIS URC I AL WAL ST I gy SOy W G k. PRI SO SO SR IR VA WIS WA SPUr oUWy Sy

it e L alad

R

3]

..
Wi oLt taialal.d

"

P

4 el A N N St RS e ouh ety Mgl et et LRl NI LA N Nn el MM Ul AR Mt aea p il ar g A A S R S i Sl i M g

98 AREA-EFFICIENT VLSI CCMPUTATION

that the minimum dimension of that area must have order at least Jgn. Thus to
¢caieve good upper bounds for layouts, it seems prudent to avoid those that have

small aspect ratios.

v
¥
ool
"

{

Kl
L
;'i

The technique presented in Section 6.3 to construct area-efficient layouts
recursively bisects rectangular areas. To avoid creating arbitrarily long and skinny
rectangles during the recursion, it is important that the aspect ratios of the generated
rectangles be bounded below by a positive constant. The next lemma sets forth
conditions whereby a rectangle whose aspect ratio is so bounded can be bisected

into two rectangles whose aspect ratios are similarly bounded.

Lemma 6-2: Let R be a rectangle with area 4 and aspect ratio o,
where ¢, > o for some ¢ in the range 0 < o < 1/2. Suppose R is
bisected parallel to its short side into two rectangles R, and R, whose
areas 4, and 4, are {4 and (1-§)4 for some § in the range l"
o < £ < 1-o0. Then the aspect ratios of the subrectangles are bounded
below by @, that is, aR1 > o and aR2 >0.

Proof. Without loss of generality, we consider R, only. The proof may be broken
into two cases. If § > op, then the aspect ratio of R, is o5/§. This is bounded
below by o since 0 < o, implies that 0 < 6/§ < 6,/§. On the other hand if
§ < g, then the aspect ratio of R, is §/0,. But o bounds § from below, and

hence g <o/a, < §/0p. O "'1
Suppose a square is divided into two rectangles so that the ratio of the area of j

the smaller to the larger is at worst ¢ /(1 - ¢), and then the rectaﬁgles are themselves .i
subdivided by at worst the same ratio of areas, and so forth. Lemma 6-2 says that if =
the bisection is always parallel to the short side, then no rectangle is ever generated i
whose aspect ratio is worse than ¢. The divide-and-conquer construction in %
Section 6.3 will use this result. :j
3

........

P . S, . W L . Y T T T T A L . e |

y
..
-
.
3

5 1P IO,

g P AMaTAaNEA

Nk O Y Cltaacas (99 ASRSL SN

w L T LT Ne ORIV ENECENRCENE e Sl
mvw.\w4‘\v\.\.1‘:...'..‘..A'-.~.-.-.~ L R A e]
-
v“
-t

A LAYOUT ALGORITHM 97

6.3 Area-Efficient Laycut Construction

Area-efficient layouts can be obtained through the use of the divide-and-
conquer paradigm. This section presents a construction which takes a graph and
divides it into two subgraphs which are recursively embedded. The two sublayouts
are then sliced to expose the vertices with edges in the cut set and then those edges

are routed as described in Section 5.2.

Theorem 6-3: Let S be a class of graphs for which an
Sf(n)-separator theorem has been proved, and let ag and ¢ be the
constants postulated by the separator theorem. Suppose A4(n), which is
defined by A(n) = /¢ forn = 1,and

A(n) = max (VA(an)+A(Q-a)n) + f(n)) 6-1)

assasl—as

for n > 1, satisfies Regularity Condition C2 with 8, = ag. Then any -
n-vertex graph G in .S can be embedded in any rectangle whose area is at
least '

Ag(n) = (4cg¥/ag) An), - 6-2)

and whose aspect ratio is at worst o g, where o is defined to be the value

of ¢, in the regularity condition, 3
Proof. Let G be an n-vertex graph in S. The following recursive construction
shows how to embed G in a rectangle R whose aspect ratio o is at most o and
whose area is Ag(n). Without loss of generality, view rectangle R so that the longer
side which has length \[M is parallel to the horizontal axis, and so that the
shorter side which has length \/m is vertical.

Step 0. /nitial condition. If 1 = 1 then the graph G is just a single vertex.

Rectangle R, which has area Ag(1), must contain a grid square because each

|3'I'hus the entries for .Hn) in Table 5-4 can be used to evahuae A (n) since these two functions
differ by at miost a coirtant tuctor.

R A e Wi "aaty i gt S At gt Nl S A AL B et a M S et gt g s St

93 | AREA-EFFICIENT VLSI COMPUTATION

(el Tl NS Ot e - 2-Aen Sodn. hthe “Sien S-St Rl

dimension of R is at least two, a fact ‘tiat is easily verified. Thus the th:orem is true
for the initial condition by simply 2ubedding the single vertex in the grid square

and returning this layout as the result of the construction.

Step 1. Partition. Using the f(n)-separator theorem, divide G into two disjoint
subgraphs G and G, that have a;n and (1—ag)n vertices respectively, where
ag < a; < 1-ag. The number of edges in the cut set is at most ¢ f(n).
g L Vi@

o ke Voo

+ + + + 4+ o+ o+ o+ o+ o+ o+ o+ 4+

Y

F + + + + + + + + o+ o+ o+ o+ o+

+ [+ + + + + + + + + + H +

o FRR
v + |+ + + Ry + 4+ + o+ o+ ¥+ H 4+
! + |+ + + [+ + + + + +{ + 4H +
s Vo, VA (D
+ |+ + + + +| + + R TTS
- Vo, VA (a.n)+A((l-a.)n) o+ A N
r Vislagh)+4g G
. + |+ + + |+ + + + + +| + H +
! + |+ + + |+ + + + + +| + H +
+ b= 4+ o+ 1+ 4+ 4+ 4+ 4+ 41 o+ +

+ + + + + + + + o+ 4+

20 R
+
+
+

Alagn) + A((]—aa)n) As(aam + AS((] -—aG)n)

\/As (agn) + 45 (1-a;)n) e

i Vo > 4
k‘ Figure 6~2: The relationships among rectangles in Step 2. .3
£ s |
R Step 2. Solve the subproblems. Remembering that rectangle R is oriented with ;

- its longer side horizontal, define R, to be a similar rectangle to R that has area 5
) Ag(agn)+ Ag((1—ag)n) and sits in the Jower left corner of R. (See Figure 6-2.) o
o Ry
% Apply Lemma 6-2 with s

. |

-

Alagn) Ala.n) -

G - s\% s

-

.

e
i

Wrs i e e sl M dane Shado i AL PR ysae S e A S C i Attt i L P AC TR VAL PR SRR R
- A LAYOUT ALGORITHM 99

to divide R, into two rectangles R, and R, whose areas ae Ag(agn) and

As((l- a G)n). The aspect 1atios of R, and R, are bounded bel>w by o since

.. < A(agn) < A(agn)
ST A T Alagn)+A(-agn)

___AQ-agn) | A@-agn) _
A(agn)+ A((1—ag)n) - A(n) -
which follows from the definition (6-1) of 4(n) and Regularity Condition C2. Now

1——0's,

solve the subproblems by recursively embedding G, in R, and G, in R,.

Step 3. Marry the subproblems. For each of the cgf(n) edges in the set of
removed edges, make at most two horizontal and two vertical slices through R, to
route the edge between its incident vertices as was shown in Figure 5-3. The length
of this new layout is length(Ry)+2 ¢ f(n) and its width is width(Ry)+2 ¢ f(n). Tt

remains to be shown that this layout actually fits in rectangle R, viz.
length(R) > length(Ro) + 2¢4f (n), (6-3)
width(R) > width(Ry) + 2¢gf(n). (64)
To prove these inequalities, mathematical induction can be used to give an

alternative definition of Ag(n) to that of Equation (6-2): A4 s(”) =4/0g forn =1,

and

Ag(n) = max (VAglan)+ Ag(1—a)n) + 2¢5f(n)/Vag P

as<agl-ag

for n > 1. We can now use this definition to prove Inequality (6-3) since

length(R) = \/As(n)/cR
> \/(As(ao.n)+AS((l--aG)n))/aR + 2csf(n)/\/ﬂ5;

> length(R,) + 2cg f(n),

which follows from the fact that o o p < 1. The proof of tncquality (6-4) mukes

use of the fuct that 6 ¢ < o, whence

R

- SR
. S
L RISV

bad

L SR

Lae 0 . .

P 4 L. b er e
PSRN

L. N
AR

2 A

Q0

-
b

B PN
-y a PN

WA

. o e
1 ",.'_-'..'..' .

s e .
4 PUTY AN (.

14

’ EolaS ad

D et e e o Bt T AUt e e At A SR EL e arat o st R S et s By M e S Aae ey

width(R) Vo4 s(n)
Vo (VAglagn)+ A(1—an) + 2¢cf(n)/Vay)
> width(Ry) + 2¢cgf(n)Vog7ag

> width(Ry) + 2¢cgf(n).

v

We have shown that the layout actually fits within the bounds of rectangle R,

o oooree e

-
1
R

which completes the proof of Theorem 6-3. O

6.4 Corollaries of the Main Result!

g

Upper bounds on the areas of VLSI layouts for many graphs can be immedi-
ately derived as consequences Theorem 6-3 and Table 5-4. Some of these
corollaries are enumerated in Table 6-3.

The separator theorems of Section 5.3 produce the first two results of the table.

Since the class of tree graphs has a 1-separator theorem, the first line of Table 5-4

says that any tree or forest of trees has a layout whose area is linear in the number of

vertices. Lipton and Tarjan’s va -separator theorem for planar graphs gives,
according to Line 2 of Table 5-4, an O(nlgZn) area upper bound for the layout of

.
PN e e e e et o
et e L
TN 0 an, TR L e
ko dlia’ a aad’ s v ta - 20d .

any planar graph of n vertices.

Ry}

q. RS
LA PR
g R VUL

" Outerplanar graphs are triangulations of polygons, perhaps with some edges

removed. The author has proved a 1-separator theorem for the class of outerplanar

P O S SRR

o show that any regular epres-ion can be recognized by a lincar-area circuit.

graphs, and thus these graphs have linear area layouts. The separator theorem for
trees is subsumed by this result because every tree is an outerplanar graph. b
The X-tree graph [34], which is shown in Figure 6-4, is a complete binary tree T
with brother connections. One could attempt to lay out this graph by modifying the v
Wine results reported in this section on trees and planar graphs have been discovered w
independently by L. G. Valiamt [42]. In fact, Valiant was able to show that trees could be laid out in "j
lincar arca with no crossosers. Abo, RO W Hloyd and J. D, Ulhnan [V have used similar technigues —
.
o
o4

P g

A
:. L

T

Table 6-3: Areas of graphs.

Class of graphs Area of layout

Treest o(n)
Planar graphs O(nlg?n)
Outerplanar graphst O(n)
X-trees (n = 2%t O(n)
k-dimensional meshes (k > 2)} O(n?-%%)
Graphs of genus k (k > 0) O(k2nig?n)
Shuffle-exchange (n = 22k) 0(n*Ngn)
Cube-connected-cycles (n = k2%)+ O(n*Ngn)

tThese results are optimal to within a constant factor.

w1

H-tree layout (an interesting exercise), but proving that the class of X-trees has a

lgn-separator theorem is easier. Bisect the graph with a vertical line that cuts at

most (Ign)+1 edges. Each of the two halves can be bisected similarly, once again

cutting at most (Ign)+1 edges, where n is now the number of vertices in the half.

Since Ign = O(n?) for any positive g, Line 1 of Table 5-4 shows that any X-tree

can be laid out in linéar area.
11

A-LJ—/_\—L

Figure 6-4: The X-trce on 31 = 2% — 1 vertices.

A k-dimensional mesh is a graph in which each vertex is connected to its

nearest neighbor in each of k& dimensions. Any class of k-dimensional meshes for

some constant k has an casily proved n!~1/%-separator theorem, and thus if k > 3,

an n-vertex graph in the class has an O(n2~2%) arca layout by virtue of Line 3 of

Tabie 5-4.

T

o e @

re

5 AP SOOI

. §
1

A d W -

pru S A e i e

i

ARI:.A bl—FlClENl VLSl CCMPUTATION

£

A graph of genus & is a graph that can be drawn with no crossovers c.n a sphere
that has k handles attached. It has been shown [2] that there is a subst.t of O(kv7')
vertices whose removal yieids a planar graph. Applying Lipton and Tarjan’s result
gives a kv/n -separator theorem. Line 2 of Table 5-4 provides an upper bound of
O(k2 n lgzn) for the layout area of an n-vertex graph of genus k.

In[17] Hoey and this author prove a separator theorem for the shuffle-
exchange graph [37] on n = 22" vertices. Although the function in this separator
theorem does not satisfy the regularity conditions of Section 5.4, the techniques of
this paper do apply, and a O(n?/1gn) area layout can be obtained which improves
the bound of O(n%/v7) given by Thompson [41]. Recently, however, * lave
been able to improve this result by showing that the O(n?/1g n) bound hole rall
shuffle-exchange graphs on n = 2* vertices. This new result, however, does “ise
the techniques in this paper.}

Preparata and Vuillemin provide an O(n%/1g?n) area VLSI layout for their
cube-connected-cycles network [33] on n = k2% vertices. The topology of this
network, which is depicted in Figure 6-5, can be derived from a boolean hypercube
of 2% vertices by replacing each vertex with a cycle of k vertices. This graph has a
n/lg n-separator theorem since removing all edges in one dimension of the original
hypercube bisects the graph, removal of thos: in another bisects the halves, and so
forth for all k dimensions. The area bound O(1n%/1g2n) that is given by Line 3 of
Table 5-4 is the same as the area of the layout which is given in [33].

Upper bounds in Table 6-3 that are optimal to within a constant factor are so
designated in the table. The linear upper bounds are clearly optimal because every
graph requires Q(n) area. The other Jower bounds can be obtained from a result of

Thompson [41). The minimum bisection width of a graph is defined to be the

15Recemly. this result was improved to the opUmal O(n"/lg n) by Kleitman, Lelghton Lepley,
and Miller of MIT. A

v . s v
i el e v . - o . B

 ALAYOUT ALGORITHM 103

Figure 6-3: The cube-connected-cycles network on 24 = 3-23 vertices.

minimum number of edges that must be cut to divide the graph into a | n/2 |-vertex
graph and a [n/27-vertex graph. Thompson proves that the area of a graph has
order at least the square of the minimum bisection width of the graph. This lower
bound argument is surprisingly similar to an analysis of printed circuit boards given
in [39).

Using another of Thompson’s arguments, it can be shown that the shuffle-
exchange graph and the cube-connected-cycles graph have minimum bisection
widths of order at least n/lgn. This arises from the fact that these networks can
realize an arbitrary permutation in O(lgn) communication steps. Thus if one of
these graphs is partitioned into two halves, it must be possible to swap data items
between the halves in O(lgn) time. Since there are Q(n) data items to be swapped,
at least order n/lgn data cross between the halves during each time unit, and hence
the minimum bisection width of these graphs is 2(n/lgn). The area of any VLSI
layout for these graphs must therefore have order at least n%/1g2n. Thus the upper
bound for the cube-connected-cycles graph is ¢ntimal, but there is a discrepancy in
the bounds for the shuffle-exchange graph.

There is also a discrepancy in the the upper and lower bounds for planar
graphs. The methods given above give only a linear arca lower bound compared
with the O(n le2n) upper bound. The author believes it more likely that the upper

bound can be improved because he knows of no planar graph that requires more

D R T . T T I T T U U W o S S Sy e G S R I

——aa q&A".'A_A.A

o

. L
. - . L K
YR B W T S P 3

_________ e Tt JeaC Mb S

104 AREA-EFFICIENT VLS CCMPUTATION

than linear area, and in addition, planar graphs appear to have consicerably more B

structure than is captured by the V1 -separator theorem alone.

6.5 An Efficient Implementation of the Layout Algorithm

If a separator theorem can be proved for a class of graphs, Theorem 6-3 can be

used to give an upper bound on the area of a VLSI layout for a graph in the class. N »

vy

if, however, a separator algorithm is given for the class of graphs, the steps in the
proof of Theorem 6-3 constitute an algorithm that can construct a VLSI layout for a

graph in the class. In this section, we provide an efficient implementation of this

A B

algorithm and analyze its performance.

The layout algorithm uses the separator algorithm as a subroutine, and

S

therefore has an execution time that depends upon the efficiencies of both this &

subrouiine and the bookkeeping necessary for the production of a layout. The
analysis here reflects this dichotomy. The total time required to lay out a graph of n
vertices can be expressed as the sum of (/) the total time devoted to the repeated -
executicns of the separator subroutine on the generated subgraphs plus (i) the time
devoted to the management of the layout representation. Later in this section, we |
shall present a fast bookkeeping scheme that is based on the UNION-FIND algorithm .4

analyzed by Tarjan [40]. But first, we analyze the amount of time required by the

many executions of the separator subroutine,

;—. The layout procedure has no direct control over the efficiency of the separator
subroutine. In fact, it might be the case that all the groph bisections have been
L previously computed so that the subroutine is deceptively fast. For the analysis

here, however, we assume that the subroutine is invoked in-line, and that s(n) is the

-4

n-vv—v 2 4
- . .. N A
- t s) Sed 9 4 ik PUNY I Y L]

5 time required by the separator subroutine to bisect a graph of n vertices. We can

exprcss the relationship of S(n), the total amount of time required for all executions

Al el aana

of the subroutine during the laying out of a graph of n vertices, to s(n) by the

recutrence S(n) = 1forn = 1, and

s

-—

P T PO S P S S S T 31

e e e e A e e e i i it e eSO R DN M T oo
.7-‘: ' A LATVOUT ALGORITHM | 105 o 1
e -
= S(n) = S(an)+ S(A-a)) + s(n) (6-5) 1
for n > 1, where a varies in the range ag L a sl—as. -
! Bounds for S(n) can be determined by the same technique used to solve _1
Recurrence (5-1). Define R(n) = $(1) for n = 1, and iff'f:f
R(n) = max R(an) + s(n)/n 4
! ag<agl-ag o B
E for n > 1. The bound ‘
S(n) < n R(n),
»
which holds for the case n = 1, also holds for all values of n greater than one, as is]
shown by induction: B
S(n) < anR(an) + (1—a)nR(L-a)n) + s(n) -
< max anR{an) + A—a)nR({(1-a)n) + s(n) i
ag<a<l-~ ag]

< max nR(an) + s(n)

agsagl~ag . _
< n R(n). B
The results enumerated in Table 6-6 are derived by evaluating R(n) to provide an R
upper bound or S(n), and using a similar function to bound S(n) from below. Let ‘J
us look at this table in greater detail.
The first line is a bit of a red herring. It says that if the execution time of the -
scparator subroutine is polynomially less than linear in the number of vertices in the .i
graph, then the contribution to the total running time is linear. It should be
apparent, however, that this precondition is rarely satisficd in practice. After all, it
takes the subroutine at least linear time just to look at all of its input. .'.i
The second line of 'Table 6-6 is more usual—the subroutine reguires approx- |
imately lincar time, In this case, the total time required by all executions of the
oo

subroutine is only a logarithmic factor larger than the time needed by the initial -

'.1

Ao SN S A I i TR e g LA il Al A A it i A B Y A Nt e At Y Sk St S A il Jath Jindl 2

103 AREA-EFFICIENT VLSI CGMFUTATION

Table 6-6: Time devoted to the separator subroutine.

s(n) S(n)
0(n9), g <1 e(n)
O(nigkn), k20 O(nigk*1n)
Q(n?), ¢>1% o(s(n))

1The function s(n)/n must also satisfy Regularity
Condition C1.

invocation of the separator subroutine on the graph presented as input to the layout
procedure. Tree graphs have a linear-time 1-separator algorithm that is not difficult
to construct, and thus according to the table, the layout algorithm would spend a
total of ©(nlgn) time executing this as a subroutine when producing a layout for an
n-vertex tree. Lipton and Tarjan’s v -separator algorithm for planar graphs also
runs in linear time, and thus only ©(nlgn) time is needed for all of its executions.

The third line of the table says that if the execution time of the separator
subroutine is polynomially greater than linear, then the time required by the first
call, which bisects the n-vertex input graph, dominates the time for subsequent
invocations. This analysis is based on the supposition that s(n)/n satisfies
Regularity Condition C1. When only monotonicity is assumed, the total time is
O(s(n)lgn).

Now that the costs due to the f(n)-separator algorithm have been determined,
we turn our attention to the bookkeeping required to maintain the layout represen-
tation. The implementation proposed here makes extensive use of the UNION-FIND
algorithm analyzed by Tarjan [40]. This algorithm provides two instructions for the
manipulation of disjoint sets. Fix1)(x) determines the name of the unique set
containing elecment x, and UNION(X,Y,Z) combines the elements of scts X and Y

into a new set Z. The analysis in [40] shows that the time required to execute n

v . - .
Lndoa 44 !;'.‘u- DR

i.'*'q; A

VG, TR

s cre et . et t.
S N f
adaad ool intend i, PR

L
2 b

L IR
UL Y WS ILPy

PR YW S R

- -

P Y ST

'
ek

e i L e i e gk Al

T

Lyl et i S)

A LAYOUT ALGORITHM 107

UNION operations intermixed with m > n FIND's is O(ma (m, 1.)j where a(m, n) is
related to a functional inverse of Ackermann’s function and grows extremely
slowly.16 We do not go into a description of the algorithm here—a good one can be

found in [1]—but we shall use the UNION and FIND operations and the results of

Tarjan’s analysis.
+ £ + + + + + +
+ o+ + +\ + + + + +
+ +/+ +/+ \ + 4+ 4+ o+ o+
+lANF + + 0+
+ [+ + [+. + S + +\ + + +

1{
+ |+ + |+ + + + 4+
+ \+ + + [+ + [+ + + +

+ + + o+ \+ + + + -
S

-

Figure 6~7: The represcmat;on of a; .la-y;;L

The key to the performance of the layout procedure is the sparse represen-
tation of layouts depicted in Figure 6-7. Each important point of the layout is kept
in two sets, an x-se! that represents its x-coordinate in the layout, and a y-ser that
represents its y-coordinate. The important points in the layc_)ut are the vertices in
the graph and the endpoints of the horizontal and vertical edge segments. The

UNION-FIND data structure maintains the relationship between a point and its

‘corresponding x- and y-sets. In Figure 6-7, this association is denoted by the

curved arcs. All the x- and y-sets for a layout are kept in linked lists. The actual
x-coordinate represented by a given x-set is therefore dctermined by its distance

from the head of the list. Pointers are used to maintain relationships between

16 Farjan comments that for all practical purposes, a(n, n) is less than or equal to three.

.« Ty e ey e . T T T e T

108 © AREA-EFFICIENT VLSI CO? i!'U'I'A'l"lON :

points. For example, an edge segmient is represented by a point:r from one 1
endpoint to the other.
+ + + 4+ o+ o+ O+ o+ o+ o+ o+ .
+ + + + + o+ o+ o+ o+ o+ o+ “1
+ + + + + o+ o+ o+ o+ o+ + + o+ +D+_——+_- + + + + o+ j
+ + + + o+ o+ o+ o+ o+ o+ + + o+ o+ 4+ +]|]|+ +D+ + +
+ + +D:-___-_+—- + +_+ + + + + + + o+ +|l+ + + + o+ ':
+ + + + +||+ +D+ + + + + 4+ o+ 4+ +|l+ +_+ o+ 4 :
+ 4+ 4+ o+ 4+l o+ o+ o+ o+ + + + o+ o+ o+ _4:;‘:j+ + 4+]
+ + o+ + o+ _:—-—TD+ + + + +D+ + 4+ + + + o+ o+ 4+ '-j
+ +D+ + + + + + + + + + + + + o+ + + o+ o+ o+ '

+ o+ + 4+ + +

3 I ETC

+ 4+ + + + o+ o+ o+ o+ o+ o+ 4

+ o+ o+ +D+:::‘— + o+ o+ o+ o+ _"

+ 4+ + + + +|]|+ +ﬁ+ + + Fl

+ + +|[+ + +[l+ + + + + ;

+ + +||+ o+ H|+ +_+ o+ 0+ 'i
. + + +|l+ + + -—:_——_—:.D+ + + *1"
t + +E+__+ + + + + + o+ o+ '_'"_'
L + + + + o+ o+ o+ o+ o+ o+ o+ '4
[_".'7 + + + + + + + + + + + RE
= HxHOH H H H H=H 3
&.. ‘ Figure 6-8: Routing an edge by slicing. ';
" There are two important operations that must be performed during the layout .12
:} algorithm—slicing a layout to route an edge and combining two sublayouts into a ,
,l. single layout. Routling a new edge between two vertices by slicing can be .1
r accomplished easily by the following procedure, which is illustrated in Figure 6-8. &
-

4
PP Y S

I

i i e o e e e e el g e P e I A L I R T
A LAYOUT ALGORITHM

1. For each of the vert;ces, FIND the x-sct and the y-set to which it
belongs.

, 2. Adjacent to these x- and y-sets in the linked lists, insert new x- and
g y-sets, effectively adding new slices of layout. Because pointers
£ represent the horizontal and vertical components of previously routed
L edges, the components are not severed and reconnected as was de-
: scribed in Section 5.2. Instead, they “stretch” automatically.

3. Add the new points for the edge to be routed to the appropriate x- and -
y-sets, and route the edge using pointers to represent the edge compo-
nents. Each new point belongs to the x- and y-sets of the previous two
steps.

Bzcause we are considering only those classes of graphs that have bounded
vertex degree, the number of edges to be routed during the entire course of
execution of the layout procedure is linear in #, the number of vertices in the input
graph. The routing slgorithm above is called once for each edge, and hence the total

number of invccations is linear in . During each invocation, a constant number of

FIND's are executed, and the rest of the work takes only constant time. Thus the : ‘
1
overall cost is the time to execute a linear number of FIND’s plus another term .'.1

which is linear. Since each FIND requires more than constant time, the linear

number of FIND’s dominates.

The cost of the FIND's cannot be determined without also knowing the number e |

’ of UNION’s that must be performed. The layout algorithm uses the UNION

'[‘._:E operation in the following procedure, which combines two layouts into one. ’
P Lo
‘

;‘ (Without loss of generality, assume the layouts are side-by-side in x.) .,.1
L 1. Append one linked list of x-scts to the other. This will produce a list :
- of x-scts for the combined lavourt such that all of the x-coordinates of

"t one sublayout lic to one side of all the x-coordinates of the other. !
r* 2. Traverse both linked lists of y-sets, and UNION corresponding y-sets to j
- produce the linked list of y-sets for the the resultant fayout. That is, the
kth y-set of the finzl layout is obtained from the UNION of the kth L
. y-sets of the sublayouits. .‘-i
The time to merge twe layonts is dominated by the time 1o do the UNION's, 1

.

M M AR i e I St

1lv AREA-EFFICIENT VLSI COMPUTATION

The number of UNION's varies each time two layouts are combined because it is
ependent upon the lengths of the linked lists that are merged. If o, is the aspect
ratio of R, the rectangle that contains the combined layout, then the length of the
linked list is \/oRA—s(n). since R is always bisected parallel to its short side. This
leads to the following recurrence which describes the total number of UNION’s

executed by the layout algorithm: U(n) = 0for n = 1, and

Un) = Ulan) + U((l-a)n) + yapAyn)

for n > 1, where e varies in the range ag < a <l-a 5 and o, varies in the range
og < 0y < 1-0. This recurrence equation is similar to Recurrence (6-5) which
describes'time devoted to the execution of the separator subroutine. In fact, the
same asymptotic results enumerated in Table 6-6 are valid when \/Z(n_) is
substituted for s(n). Notice in particular that if A¢(n) = 0(n9) for some q < 2,
then U(n) = O(n).

We now have a relationship between the area of the layout Ag(n) and the
number of UNION’s U(n). But 4 s(") was determined, after all, by f(n), the width
of the separator. (Do not confuse f(n) with s(n), the time required to execute the
separator subroutine.) Carrying this relationship through, the number of UNION’s
U(n) can be expressed in terms of f(n), and then, using the fact that there are only a
linear number of FIND’s, the total time required by the management of the layout
representation can be determined. Table 6-9 enumerates these results, where T(n)
is the time required by the bookkeeping to lay out a graph of n vertices.

The first line of the table can be derived by observing that if f(n) = O(n9) for
q < 1 and is monotonic if f(n) = Q(V7), then Ay(n) = Q(n%7) and, as was noticed
earlier, U(n) = 6(n). Because the total number of FIND's is also linear in n, the
total tinre required for bookkeeping is O(na(n, n)).

The second line of the table gives the worst-casc running time for the

bookkeeping that occurs when there is no better than an n-separator theorem. In

AZBIrA S S it Biatvt Math St At i Miahi i M MY LT S T AR AT R R AR R

,1 PRl RS
isd O Y H

cAALA

A Eaaces

h

PPV VY VYO TPV 1

5.,
b gl

) Y VU WL U Y

1

X

L T T T T T TR e AT TR e T T e s T e T e T e T e e
(5 aa ey oume e -odued Bad 2y Mt e o Sl SaiCg W inn NN Jren LG e ivnn e i Suit SN P P N M P

A LAYOUT ALGORITHM 111

Table 6-9: Time dcvoted to the management of the layout reprz;entation.

fThe function f(n) must also be monotonic if

f(n) = 9(n).

f(n) T(n) 5
0(n%), g <1t &(na(n, n)) 9
o(n) O(nign) _‘_'_j

' :'A.._i

this case the area given by the layout procedure is G(nz), and the time to combine
layouts is O(nlgn). Other bounds are readily derived for cases when the growth of
J(n) lies between n? for ¢ < 1 and n. For example, if f(n) = n/lgn, then the time
for bookkeeping is O(nlglgn). Thus even if the separator algorithm is only
marginally good, the bookkeeping time is nearly linear.

.
a2
—
PR

le, . ..

...................................

e
N

'f

-2 :“;
% i
= N
L v
o CHAPTER 7)
E?::i E
F Further Layout Results .
3
; i
o

7.1 Introduction

The results of the previous chapter can be applied to other layout problems.

Section 7.2 considers layouts where vertices are required to lie on a straight line.

The results for this model can be easily generalized to the model where all vertices
are constrained to lie on the (convex) perimeter of the layout. The techniques of

Chapter 6 are employed to provide area bounds for graphs based on separator

T

’
s
te .l
B
o
oY
.

o

theorems for the graphs. In addition some lower bounds are presented that

demonstrate the optimality of the constructions for trees and planar graphs.

, S

Section 7.3 contains a design for an O(n1g2n) area chip that can be configured

~ 4

to implement any tree of processors by making only n solder-dot connections such e
. S

as are used in gate-arrays. If n connections can be broken as well, there is an -
O(nlgn) area design which can be configured to implement any tree. These results .
—

can be generalized to arbitrary graphs.

Section 7.4 considers how a complete binary tree may be partitioned into chips.
The major constraint in chip partitioning is the limit on the number of off-chip
connections or pins. An arbitrarily large, complete binary tree can be built from a
single type of chip whose pin count is independent of the size of the tree and whose

chip arca is efficiently utilized.

— LJ_'J‘A'J_[P { PPN R

112

——

v

T Ty

Ty A A RS Jme Ak b s 4
AN Y DR . '
L e .

v

- -y
-

k‘-v—afv, x{ ;ﬁ," A

R T————

FURITHER LAYOUT RESULTS 113

tBade S Sk Tt 4 - T

7.2 Layouts with Collinear Vertices!

Figure 7-1 shows how an f(n)-separator theorem can be used to construct a
layout with collinear vertices. First, the graph is bisected by cutting at most ¢ f(n)
edges. Then layouts are recursively constructed for the subgraphs and are placed
side-by-side along the baseline. Vertical slices are made through the layouts, and

edges are routed in the space above,

' f(n)AL
T T

H(an) : . H(n)

AIL 00 nn Eanla 1 ;L

< 0(n) >)

Figure 7-1: The construction of a layout with collinear vertices.

The analysis of this construction is much easier than that in Section 6.3. Since
at most two vertical slices are made for each ¢dge, the length of the layout along the

baseline is O(n). The height H(n) of the layout is a constant for n = 1, and

H(n) = max H(an) + cgf(n)

ac<a sl-as
forn > 1.

If f(n) is nondecreasing, then H(n) = O(f(n)lgn) and the total area A s(n)is
therefore O(f(n)nlgn). In particular, if f (nj = O(lgkn), then
Ay(n) = O(nlgh*1n). If f(n) is Q(n?) for some g > 0 and f(n) satisfies Regu]z;rity
Conditicn C1, then H(n) = O(f(n)) and Ag(n) = O(n f(n)).

This means that planar graphs can be embedded on a line in O(nvn) area und

17Of' the rescarch reported in this section, the the upper bounds on the arcas of trees and planar
graphs represent joint work with my advisor, Jon L. Bentley.

SRR 1 - !
EER SN PP A

!
. oad

TR T T A W W TR TR e e e e T e e - hd At At B A g

114 AREA-EFFICIENT VLSI COM i UTATION
trees in O(nlgn) area. We now shc'v that these embeddings for trees and planar

graphs are optimal to within a cunstant factor. A similar result on trees was

independently discovered by Brent and Kung [7], who show that in any layout of a

1al -

aa'h

complete binary tree, the area devoted to wire must have order at least nlgn. The
approach here differs in that we show that the convex region containing the layout

must have Q(nlgn) area.

i

Lemma 7-1: For any complete-binary-tree layout of n = 2k -1
collinear vertices where k > 0, there exists a perpendicular to the baseline
that lies between the leftmost and rightmost vertices and cuts at least
[k/27 edges and vertices.

'S

..,_“ ,
[TV (ST

Proof (Induction.) The lemma is easily satisfied for the initial cases of n = 1 and
n = 3. For the general case, consider the four subtrees of size 2=2—1, (See
Figure 7-2.) Call the leaf that is leftmost on the baseline v, and let w be the ""
rightinost leaf that is in a different subtree from v. Choose one of the two subtrees :l
that contain neither v nor w. The inductive hypothesis gives us a perpendicular that
cuts [(k—2)/27 edges or vertices in the subtree. Since v and w are in different ‘I"
halfplanes as determined by the perpendicular, the path between them must be cut |
by the perpendicular. But this path is disjoint from the subtree, which means that :
one more edge or vertex is cut for a total of [k/27]. O "3

O

v w

Figure 7-2. The constructi-on in Lemma 7-1.

This lemma can be used to show that the minimum area of any convex region

containing a layout for a complete binary tree must be Q(nlgn). The lengthwof the

L
. T,

-
S S e O Y -
.- T . ! PR . PRSI . P -
- . \ A P . LT T
. L .- . { I '
maaia uta e —ae - . IS § PR X) .

1
'
ad

B

FURTHER LAYOUT RESULTS 115

layout along the baseline mist be Q(n), and as demonstraied by the previous
- construction, there is a poiit in the layout Q(lgn) away from the baseline. This
- point and the two points on the limits of the baseline determine a triangle which has
Q(nlgn) area. Since any convex region that contains these three points must
contain the triangle, so must any convex region containing the layout have Q(nlgn)
area.

Similarly, the O(nv/r') upper bound on the area for the layout of an n-vertex
planar graph is tight to within a constant factor because a square mesh requires
Q(nv'm) area. This can be shown by considering that the minimum bisection width
of an n-vertex square mesh is vn. Thus the perpendicular to the baseline that
divides the vertices on the baseline into [n/2] and [n/27 vertices must cut
vn edges. The rest of the proof follows that for the complete binary tree.

The lower bound results here generalize immediately to the model in which all
vertices are constrained to lie on the perimeter of a convex region. The perimeter of
the region must have length 2(n) since there are n vertices on it. The diameter of
the region (the line segment that realizes the greatest distance between twe points)
must also be Q(n) since it is no less than a factor of # times the length of the

perimeter. Applying the techniques of the previous construction and using the

diameter of the region as a baseline yields the same lower bound results as before.
In the casc of the mesh, an exact bisection by a perpendicular may not be possible

because some vertices may lie on the perpendicular itself. This situation can be

{ avoided (see [41]) by putting a unit jog in the perpendicular so that it looks like a

{ lowercase aitch without a left leg. The “perpendicuiar” can then be adjusted

E' vertically to biscct the graph.

8 For the standard VLSI model in which vertices nced not be collinear, a similar
construction shows that minimum dimension of any iayout of a complete binary tree

. must be Q(lgn).

k‘,- R - e et PO R S T T T oo G S P A U PP LI I TPy P P T SN

[e 0 mca e - atas Arue SAs dous T e MRt D bt e Mt sl T A A LA S

4

.. .A ., ,.,,.
. 7 " -
aa o SR IOy

1
P
i

A ma'm_ ala_a . a_a_a

l.,
s 4

"y " - —— T eTeny—w e A Aad

AREA-EFFICIENT VLSI CCMPUTATION
7 3 Configurable Layouts.

One of the attractions of the ROM, PLA, or gate-array approaches to
integrated circuit designs is that one layout organization can be customized for a
particular application without disrupting the overall geometry of the layout. For
example, the bits of a ROM memory can be set without affecting its layout. The
choice of minterms for a PLA can change while the layout for the PLA remains
about the same. In the gate-array approach, one chip is produced with unconnected
wires running in channels between the components. The chip is configured by
adding solder dots to connect the wires, but the overall structure remains the same,

This philosophy of design can be applied to graph layouts.

0{/3 n) {

~N PN

Figure 7-3: A layout that can configure any tree,

Figure 7-3 shows an O(nlg2n) area layout for a chip which can implement
any binary tree of n vertices by simply adding » solder dots. The organization of
this chip is based on the collinear layouts of Section 7.2. All of the vertices are lined
up on the baseline and their connections run vertically. Parallel to the baseline are
1g2n horizontal wires. The top O(lgn) wires run all the way across the layout. The
next O(lgn) are broken halfway. The third group are broken into four, and so forth.
Placing solder dots on the intersections of the horizontal and vertical wires connects
the vertices.

To decide where to put the solder dots, we use the fact that any binary tree

with n vertices can be bisected into | n/2] and [n/2] vertices by cutting O(lgn)

4

144‘; -

'
ol

TN T T e e
a

Ca e SN 4ot st e JED e

P P —— P — - e G S TERa i S At S e i e AP "'1

FURTHER LAYOUT RESULTS 117

edges. This exact bisection result follows immediately from the onc-separator
theorem for trees. Observe that the layout without its top O(ign) wires forms two
smaller versions of itself. Thus the two sets of vertices can be recursively laid out on
either side of the halfway break. Then the two sublayouts are combined. Each edge
in the cut set is mapped to one of the top O(lg#) horizonta® wires. Two solder dots
are placed on each horizontal wire to connect the two vertices incident on the
corresponding edge.

If the horizontal wires are considered to be buses, several solder dots can
connect the output of one processor to the inputs of many others. Using this
interpretation, the layout can be configured to implement any tree no matter what
its vertex degrees. A vertex-separator theorem such as that of [25] is used in this
instance to determine where the solder dots go.

The approach will work for more than just trees, of course. If the class of
graphs has an f(n)-separator theorem where f(n) = Q(n9) for some ¢ > 0, then a
layout whose area is O(n f(n)) can be configured to implement any graph of n
vertices in the class. If f(n) = ©(n), the design degenerates to a crosspoint switch.

Sometimes it is just as easy to break as make .connections. When this
alternative is available, any tree can be configured from an O(nlgn) area layout.
The collinear layout results of the previous section lead directly to such a design.
Wires placed in the horizontal channeis are broken along a horizontal line when the
vertices are partitioned by the scparator theorenm. For classes of graphs with an
f(n)-separator theorem where f(n) = Q(n?) for ¢ > 0. the ability to break
connections gives at most a constant factor improvement in arca over the previous

design when this technique is used.

®

e emaco ik A o0

e e 0 A ol haaae

'8

o S i g i Sl M M S M A i S P S A S S Mind Sl S i A NN Ciad v Lo

115 AREA-EFFICIENT VLSI COMPUTATION
7.4 Packaging a Complete Binary Tree

Although integrated circuit technology is advancing at a breathtaking pace, one
sector of that technology is crawling in comparison. The number of external
connections from an integrated circuit chip is severely limited. Whereas some
enthusiastic technologists project an eye-opening 108 components per chip, two
hundred pins per chip seems a large number to most. A chip that requires many
more is unlikely to be realizable for quite some time.

A complete binary tree is an attractive structure from this point of view if the
tree fits entirely on one chip and the root is the only off-chip connection. Several
researchers [3, 8, 23, 36] have proposed, however, that much larger tree systems be
built. (Sce also Section 3.2.) When any system is larger than a single chip, it
hecomes necessary to partition it among separate chips that can be assembled at the
printed circuit level. What is the most effective way to partition a large complete
bhinary tree among chips?

Figure 7-4 shows the partitioning proposed in [23]. Each of the squares in the
diagram represents a chip packed as full as possible with an H-tree layout
(Figure 5-2, page 83). The rectangle above is another chip which contz'tins the
standard O(nlgn) layout (Figure 5-1, page 82), but with leaves connected off chip.
This second chip can be used repeatedly to combine several smaller complete binary
trees into a larger. Thus with two kinds of chips, a complete binary tree of any size
can be built up. At the printed circuit level, the structure is a complete k-ary tree
where & + 1 is the number of off-chip data paths.

We can do better. Figure 7-5 shows how arbitrarily large complete binary
trees can be built out of a single chip that has only four off-chip connections. Each
chip contains one internal node of the tree, and the remainder of the chip is packed
as full as possible with an H-tree layout. The internal node requires three off-chip
connections (denoted F, R, and L in the figure) for its father, right son, and left son.

The H-tree requires only one off-chip connection (denoted T) to its father.

COE]

'
i

e N

J.

Aod ot ad oo ok

s

'@

A s et et ok —a

' q

Fr——— T
- 119 : T
-
:: =
'.. .‘|
l.) ‘
L
(2
4
- . . -
Figure 7-4: An inefficient partitioning of a complete binary tree into chips. 1
To interconnect two chips, the unconnected internal node on one of the two 'j
chips is selected as the father of the two H-trees. (In Figure 7-5 the internal node k
on the left has been chosen for this purpose.) The R pin on this chip is connected to 1
its own T pin, and the L pin is connected to the T pin on the other chip. Considered .‘1
as a unit, the combined two chips now have the same structure as a single chip—
three connections to an internal node and one to the root of a complete binary tree. -]
The pair of chips can be similarly combined with another pair to produce a M
quadruple of chips, which can in turn be combined, and so forth. Figure 7-6 shows "4
a large complete binary tree which has been wired up in this recursive fashion. o
L L— —F "]
- —— -
LI,
)
T— || "
{ jmm——————— ' jm———————— i :
L : : : : hd
y 1 1 i [=
b]]] t 3
| ' 1 :]
3]
3 | ;’ —-:q : ;
.]] ! ! 3
F]]]) 1 -
‘ : ! ll §_‘L-§ : ".*‘
3 :]] 1 i .
1 ' 1 ! ' X
1 ') ['
]] | t
o e e e m = 1 s e e e e 1
r. Figure 7-5: Only one kind of chip”is nceded to package a complete binary tree. o

3 .

R - e N e A P

T { vk
Il ‘ e .

. Lt
| . .

ML BB L AL AL AR A
. .
P

ST - AREA-EFFICIENT VLSI COMPUTATION

DM~
-“rn3

DT~
-“r=2

DN
-“rm>

DN -
“rm>

Figure 7-6: A large complete binary tree built up from a single kind of chip. -

The one-chip method has many advantages over the two-chip method. Most
obviously, the one-chip method uses only one kind of chip. Why manufacture two
kinds when one will do? Second, there are only four data paths that go off chip.
The only way the t_wo-chip solution can match this is if the chip with the standard
layout has exactly one internal node on it. Third, the chip used in the one-chip
method is packed full. The other method leaves the chip with the standard layout
almost empty. Since the cost of an implementation is almost directly related to the
number of chips required [5], the same size tree can be built for less with the one-
chip solution. Fina!ly, the layout of the printed circuit board is linear in the number
of chips using the one-chip method. The two-chip solution gives an O(nlgn) printed
circuit layout. Although the case is not particularly strong for asymptotic analysis of
printed circuit layout, the constant factors give a clear preference to the more
regular, linear area layout. If circumstances permit, the wires connecting the chips
can m fact be routed underncath the chips themselves, thereby requiring no more

area on the printed circuit board than the chips themselves.

e DR

i) c R o 4

T
.

Coat.

Conclusion

Systolic Systems

Systolic structures provide a model of parallel VLSI computation that takes
into account issues such as 170, control, and interprocessor communication. In a
systolic system pipelining and multiprocessing occur simultaneously to ensure high
throughput and fast response. The systolic approach is not the answer to every
VLSI prcblem, but when it does apply, good algorithms that work well in practice
are a consequence. (For a practical demonstration of this design philosof)hy, see

121)

Since communication in a systolic system is through fixed interconnections, it
is desirable in a VLSI implementation that these data paths have simple and regular
geometries. This thesis has concentrated primarily on systolic algorithms for arrays
and trees out of this concern. Part II showed that these are not the only graphs with
good layouts, however.

Among the contributions of Part Il is a design methodology for systolic
systems. An algorithm can be designed in the more flexible design space of
semisystolic systems and transformed by the Systolic Conversion Lemma
(Lemma 2-1) into a systolic system. The most important corollary of this lemma is
the Broadcast Corollary (Corollary 2-4), which shows that for any systolic system
augmented by broadcasting, there is an equivalent systolic system with no broad-
casting. The Broadcast Corollary allows a designer to build systems thut behave as if

the processors operate on global data, but without glubal communication.

.i
I

— e T T T T T Ty s R R T . ol wEFTY T T WY Ty e

The Reset Theorem (Theorens %-6) provides a transformation that maps
«lgorithms from the design space of scmisystolic systems back into the design space.
This transformation is orthogonal to the Systolic Conversion Lemma in the sense
that if the Systolic Conversion Lemma could be applied to an algorithm before the
transformation, it can be applied after. The view from the host is that a global
action has taken place in a single pulsation, yet the work is in fact distributed across
time using local connections.

The other general result, Lemma 2-35, parallels earlier work by Cole [9] and
Smith [35] in the realm of cellular automata. We have extended this result to all
semisystolic systems. In addition, the ideas of real-time computation pioneered by
these two researchers have been extended by this thesis.

The general results of Chapter 2 gave way to many particular algorithms in
Chapter 3. Many interesting varieties of real-time priority queues were developed
including the systolic multiqueue and one which operates on variable-length keys.
The results were extended to the real-time maintenance of order statistics and a
pipelined search tree. In addition, a real-time, binary up-down counter and a real-
time pattern matcher were designed. The descriptions of these algorithms would
have been substantially more complicated without the Systolic Conversion Lemma.

Chapter 4 showed how systolic arrays can efficiently perform matrix computa-
tions. Mairix-vector multiplication, solving of triangular linear systems, convo-

lution, discrete Fourier transform, and filtering can all be computed on linearly

- connected systolic arrays. Matrix multiplication and LU-decomposition can both be

performed on hex-connected systolic arrays.
For the important problem of solving a dense system of # linear cquations in

O(n) time on n?

mesh-connected processors, the LU-decomposition algorithm
improves upon the matrix inversion algorithm of Van Scoy [43). LU-decomposition
is to be preferred to matrix inversicn [10f particularly for band matrices which

typically have dense inverses. Furthermore, the hardware requirements for the

122 AREA-EFFICIENT VLSI COMiIPUTATION

Bunde)
..q 4
Aok

iy SN

v

Lan

.
1%

"",-
Y Ll

B} i

—T— A Suai st S e AN e M iy

CONCLUSION 123

LU-decomposition algorithm are only a function of the band’s v-il:h, not its length.
Finally, the all-important problem of host-device communi.alion has been ad-
dressed, where the band-matrix solution has the advantage of pipelining.

Systolic systems treat the costs due to interprocessor communication explicitly.
These costs will likely be a dominant factor in the overall cost of computation in
VLSI systems as they are for other parallel systems. Systolic systems can help bridge
the gap between theory and practice because these costs are modeled explicitly.
When a systolic system is built as an actual VLSI chip, its behavior obeys the

mathematics of a computational theory.

Layouts

The layout algorithm of Part II should be viewed in an historical context. Most
wire-routing programs for printed circuit boards have two phases. First, the chips
are placed on the printed circuit board. Then leaving the chips fixed, wires are
routed one by one using heuristic search—usually a variant on the path-finding
algorithm attributed to Lee [22]. Most hardware designers concede that the first of
these two steps is the harder. With a good placement, routing is easy; with a bad
placement, routing is impossible.

Most routers for integrated circuits use much the same approach. Variations
include polycells [26] and gute arrays. In the pol&cell approach the components are
laid down in horizontal strips and the channels between the strips are used for
routing the wires. The advantage is that the channel width is not fixed. If a channel
has too much congestion, extra tracks can be added easily in a manner reminiscent
of slicing. The channels run both horizontally and vertically in gate arrays, but are a
fixed width determined in advance. Typically, all cells are identical and are
connected up with a final layer of metalization.

Recently, Johannsen [18] has introduced bristle blocks as a technique for laying

out integrated circuits. Rather than using standard wire routing to connect cellsin a

@

- -1

174 AREA-EFFICIENT VLS{ COMPUTATION

design, the cells plug together. This would scem to mean that all cells must have the
sarne width or pitch. Instead, however, the cells are designed with placcs to stretch so
that a cell with smaller pitch can be adjusted to plug into a wider cell with no
routing necessary.

The idea of using divide-and-conquer to help with the general wire-routing
problem is not new. As far back as 1969, Giinther [15] gave a heuristic procedure
for arranging machines in a workshop given the frequency of travel between
machines. This algorithm, which applies as much to circuit placement as to machine
placement, partitions the transportation graph and places the subgraphs in subrect-
angles of the original area. Giinther’s technique for partitioning is highly heuristic,
and he comments that it is the critical step. Another heuristic for graph partitioning
is given by Kernighan and Lin [19]. Among the applications they mention is that of
partitioning chips among printed circuit boards so as to minimize the connections
between boards. There is an algorithmic solution to the partitioning problem,
however. It is based on the fact that the graphs of interconnections that arise in
practice are almost planar. By replacing each crossover in some drawing of the
graph with an artificial vertex that performs the crossover, Lipton and Tarjan’s
separator algorithm for planar graphs can be applied.

It is unlikely that a fast general partitioning algorithm will be found because
the problem of finding the minimum bisection width of a graph is NP-complete
[13]. In other words, graphs are hard to partition. This unfortunate situation brings
up the question, “Can the divide-and-conquer approach used in this paper, which
performs placement and routing sinw[lanéously. compete with or enhance those
techniques already in use?”

A difficulty with applying the techniques of this paper concerns constant
factors in the areas of layouts. The model in Section 5.2 assumes that each vertex
fits into a square of the grid, and furthermore, that the sizes of vettices und edges are

comparable. For many practical applications, the vertices are somewhat larger than

Do RN, RPN

v
< A

y
V'JI

'
BE!
Iy
»
-

3-SR

3
2
W P UL,

- - . - _— T ——rreyT o, TN R TR T R e

CONCLUSION 125

the edges. This means that the grid size is substantially larger than the edge width,
and thus each slice through the layout wastes a large constant {actor. A solution to
this problem is to design the cells represented by vertices with places where they can -
be sliced, and then use the largest unsliceable portion of a cell as the granularity of) 3
the grid. This technique complements the bristle blocks approach because places |
where a cell can stretch are frequently places where it can be sliced. .,'4
There is another solution, however, which does not require the cells to be
sliceable, and yet does allow the granularity of the grid to be the width of a wire.
The limitation is that sizes and shapes of vertices must not vary widely. Each vertex ,'4
is placed in a rectangle whose area is four times the area of the vertex. The layout
algorithm is allowed to slice this rectangle, but slicing is allowed only in one

direction. In the other direction the space between or next to the layouts is used as a

'-1

channel for routing. When a slice is made through a vertex, the vertex is not sliced, " ﬂ

but instead the edge simply crosses over on another layer. When the algorithm]

terminates, each edge that crosses over a vertex is routed around the vertex in the .'J

unused arca provided by the rectangle. o

Where vertices are large, unsliceable, and of widely varying sizes, the problem

becomes one of two-dimensional bin-packing with constraints. This formulation .}

seems the least tractable. It may be, however, that as with bin-packing, simple _

heuristics can be found that give rcasonable solutions for commonly occuring ‘

L. instances. .;
In summary, this thesis has shown that a good separator theorem for a class of *

g grapis is a sufficient condition for there to be a good VLSI layout of any graph in . !
. the class. ‘This led to linear arca layouts for trees which have a one-separator f. .}
- theorem and O(n Igzn) area layouts for planar graphs which have a \/; -separator T
thcorem. A general algorithm was presented that lays out these particular graphs in ;

i; O(nlgn) time. Most of the computation goes to exccuting the separator algorithm .i
- for the graphs—the time devoted to management of the layout representation is "
: nearly lingar, !
: .
! .
LL R J

R A AR e AT it

AREA-EFFICIENT VLSI CCMPUTATION

The divide-and-conquer technini'es apply to other models including that in
which all vertices are constrained t> oe collinear. The layout results of this model
were applied to a study of configurable layouts. It was shown, for example, that
O(nlg2n) area is sufficient to implement a reconfigurable layout that can imple-
ment any tree by only adding n solder-dot connections. If n connections can be
broken as well, there is an O(n1gn) area layout.

Among the peripheral results of Part II was the fact that any VLSI layout, no
matter how long and skinny, can be reembedded in a square whose area is at most

three times the area of the original layout. Also, a design was proposed for the

partitioning of a complete binary tree into identical chips.

T T A Yy T L, YT x

ataa

el e

-

e -
Y L

_— e AP TY .

A _a 4 o L

B Balb et Sah T 3 [SN A4 I e ne Jea b An I ASate i akdind St A A A I MRS

Acknowledgments

e ¥ 2 0 5y PR A L s o T
- A - . . C PRI o s . 1

Few theses are written in a vacuumn, and I am pleased to have written mine in
the warm environment of the Carnegie-Mellon University Computer Science -
Department. The cohesiveness of that community allowed the cross-fertilization of

ideas from different disciplines within computer science and provided me with the

exciting opportunity to explore integrated circuits from a theoretical perspective. .4
No student could have had more attention and encouragement from two
premier computer scientists than [had from my advisors Jon L. Bentley and H. T.

King. From Jon [learned about algorithm design and the importance of seeking

' .' o
. . PR .
e .

simple formulations of ideas. Kung taught me the central issues of parallel 1

computation and offered me wise and enlightened advice about my academic 1

career. .4'

I spent many hours with Jim Saxe sorting through the details of my thesis. Jim '_ ’

taught me about recurrences (the hard kind) and provided me with constant ?f

feeiiback about my ideas. .‘

Rob Sproull and Leo Guibas were good enough to serve on my thesis "4

ccmmittee. Both provided me with excellent comments concerning the organization :

and substance of my thesis. ‘

_ I profited from many discussions with Mike Foster, Peter Schwarz, and Clark =
: Thompson. Rick Gumpertz deserves special thanks for finding and removing the :
;‘ bugs I identified in Scribe while producing the thesis. I would ulso like to think "

David Reed and Andrew Palay for the dover hacking that allowed me to print my

thasts at MIT.

by 127 »
5 !
- ‘
]

T vv-';v'- v‘v’
L PRI y

N |

Ay R
. I N . . ' -

?‘-‘r{—. I
. e s

BE C BRRREEE SR
e - e .

PPy

R4

N S L e e B e e S e Tt et Sl N S M T —— Ty P ———

vs AREA-EFFICIEN'I‘ VLSI 'C(‘)MPUT A'l'ION

I am especially grateful to the Fannie and John Hertz Foundation which
novided me with a fellowship during my graduate education.

My wife and lover Linda Lue deserves more than thanks. She kept me sane
during the most difficult moments of thesis writing, and she devoted her energy to
our marriage and family so that I could pursue my degree. My love for computer
science shrivels in comparison with my love for her. This thesis is as much hers as it

is mine.

—

o

! .
i

PSP W A

o !
-

oy T i et S o TR T . T e T LT -
I T e e [N o ST TR TR o TS TR P 1
.
AS
R

References CJ

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Massachusetts,
1974. L 2

2. Michael O. Albertson and Joan P. Hutchinson, “On the independence ratio of -_' 1
a graph,” Journal of Graph Theory, Vol. 2, 1978, pp. 1-8. ‘

3. Jon Louis Bentley and H. T. Kung, “A tree machine for searching problems,” -
Proceedings of the 1979 International Conference on Parallel Processing, 1EEE, o
1979, pp. 257-266. '

4. jon Louis Bentley, Dorthea Haken, and James B. Saxe, “A general method for

solving divide-and-conquer recurrences,” Technical reportCMU-CS-78-154, E'3:_3

Department of Computer Science, Carnegie-Mellon University, December P‘

1978. 7
5. Thomas R. Blakeslee, Digital Design with Standard MSI and LSI, John Wiley

& Sons, New York, 1975.

6. R. P. Brent and H. T. Kung, “Fast algorithms for manipulating formal power
series,” Journal of the Association for Computing Machinery, Vol. 25, October
1978, pp. 581-595,

7.R. P. Brent and H. T. Kung, “On the area of binary tree layouts,” Technical <o
report TR-CS-79-07, The Australian National University, Department of it
Computer Science, July 1979. :

. o
‘o oo ' .
ladaialda FR

8.Sally A. Browning, The Tree Machine: A Highly Concurrent Computing
Environment, Ph.D. dissertation, Computer Science Department, California
Institute of Technology, January 1980. d

9. Stephen N. Cole, “Real-time computation by n-dimensional iterative arrays of
finite-state muchines,” /EEE Transactions on Computers, Vol. C-18, April
1969, pp. 349-365.

10. G. Dahlguist. A. Bjorck, and N. Anderson, Numerical Methods, Prentice-Hall, —
Englewood CIHTs, New Jerscy, 1969, o
129 .

D P U e S S T - Pom e P AL . S - S P Y S

GASAARSAENA IS AR e A R aarai i A A A A S R, |
- 1 AREA-EFFICIENT VLS] COMPUTATION
L, >
E' - 11. Robert W. Floyd and Jeffrey D. Ullinan, “The compilatior of regular -
expressions into integrated circuits,” 2/st Annual Sympozium o'. Foundations
of Computer Science, IEEE Computer Society, October 1980.

12. Michael J. Foster and H. T. Kung, “The design of special-purpose VLSI
chips,” Computer Magazine, Vol. 13, No. 13, January 1980, pp. 26-40, An
early version of this paper entitled “Design of special-purpose VLSI chips:
examples and opinions™ appears in Proceedings of the 7th International
Symposium on Computer Architecture, La Baule, France, May 1980.

13. M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified polynomial
complete problems,” 6th Annual Symposium on Theery of Computing, ACM,
April 1974, pp. 47-63.

14. Leonidas J. Guibas, Private communication, March 1980 .

15.Th. Giinther, “Die riumliche anordnung von einheiten mit
wechselbeziehungen,” Elektronische Datenverarbeitung, May 1969,
pp. 209-212.

16. Frederick C. Hennie 11, Irerative Arrays of Logical Circuits, M. 1. T. Press and
John Wiley Sons, Inc., M. 1. T. Press Research Monographs, 1961.

17. Dan Hcey and Charles E. Leiserson, “A layout for the shuffle-exchange
network,” 1980 International Conference on Farallel Processing, August 1980,
pp. 329-336.

18. Dave Jchannsen, “Bristle blocks: a silicon compiler,” Proceedings of the
i Caitech Conference on Very Large Scale Integration, Pasadena, California,
4 January 1979, pp. 303-310. o

P 19. B. W. Kernighan and S. Lin, **An effective heuristic procedure for partitioning p-
t
3
b

|
,J
|
|

graphs,” Bell Systems Technical Journal, Vol. 49, February 1970, pp. 291-308. :

20. H. T. Kune, “Let’s design algorithms for VLSI systetias,” Proceedings of the
Caltech Conference on Very Large Scale Integration, Charles L. Seitz, ed.,
[Pasadena, California, January 1979, pp. 65-90.

21 H. T. Kung and Charles E. Leiserson, “Systeclic arrays (for VLSI),” Sparse
Matrix Proceedings 1978, 1. S. Duff and G. W. Stewart, ed., Society for
Indastrial and Applied Mathematics, 1979, pp. 256-282, An early version
appears in Section 8.3 of [28].

Prp——

22.C. Y. Lee, “An algorithm for path connection and its applications,” /IRE
Transcctions on Electronic Computers, Vol. EC- + No. 3, Scptember 1961,
pp. 346-365.

T L TR TR LT T TR T T e T e e T
LI A S St A A . v e ST e e N

REFERENCLES 131

23. Charles E. Leiserson, “Systolic priority queues,” Proceedings of the Caltech
Conference on Very Lurge Scale Integration, Charles L. 3zitz, ed., California
Institute of Technology, Pasadena, California, January 1979, pp. 199-214.

24.P. M. Lewis, R. E. Stearns, and J. Hartmanis, “Memory bounds for recog-
nition of context-free and context-sensitive languages,” IEEE Symposium on
Switching Circuit Theory and Logical Design, IEEE, 1965.

25. Richard J. Lipton and Robert E. Tarjan, “A separator theorem for planar
graphs,” A Conference on Theoretical Computer Science, University of Water-
lco, August 1977.

26. Roland L. Mattison, “A high quality, low cost router for MOS/LSI,”
Proceedings of the ACM-IEEE Design Automation Workshop, Dallas, Texas,
June 1972, pp. 94-103.

27. R. McNaughton and H. Yamada, “Regular expressions and state graphs for
automata,” /EEE Transactions on Computers, Vol. 9, No. 1, March 1960,
pp. 39-47.

28. Carver A. Mead and Lynn A. Conway, [ntroduction to VLSI Systems,
Addison-Wesley, Reading, Massachusetts, 1980.

29. Carver Mead and Martin Rem, “Cost and performance of VLSI computing
structures,” [EFE Journai of Solid Staie Circuits, Vol. SC-14, No. 2, April
1979, pp. 455-462.

30. George H. Mealy, “A method for synthesizing sequential circuits,” Bell
Systems Technical Journal, Vol. 34, No. 3, September 1955, pp. 1045-1079.

31. Edward F. Moore, “Gedanken-experiments on sequential machines,” In
Automata Studies, Princeton University Press, Princeton, New Jersey, Annals
of Mathematics StudicsNo. 34, 1956, pp. 129-153.

32, Yu. Orfinan, “On the algorithmic complexity of discrete functions,” English
translation in Soviet Physics—Doklady, Vol.7, No. 7, 1963, pp. 539-591.

33. Francc P. Preparata and Jean Vuillemin, “The cube-connecied-cycles: a
versatile network for parallel computation,” Teciinical report 336, Institut de
Recherche d'Informatique et d’Automatique, June 1979,

J4. C. H. Séquin, A. M. Despain, anrd D, A, Patterson, “Cominunication in X-tree,
a modular multiprocessor system.”” ACM 78 Proceedings, ACM, 1978.

35.Alvy Ray Smith [II, “Ccllular automata theory,” Technical
rcport SEL -70--014. Stanford Electronics Laboratory, Cecember 1969,

36.S. W. Song. “A hizghiy concurrent tree machine for databuse applications,”

1980 Iricrnaiional Conference on Parallel Processing, August 1980,
pp. 259-2¢3.

U,

L_.A_. S 14_-_A-.‘;+.. i a. Aavii a4 umarac-m

. d

| YR I

,w,r-‘..
'
.-

152 AREA-EFFICIENT VLSI COMPUTATION

31, Harold S. Stone, “Parallel processing with the perfect shuffle,” IEEE Transac-
tions on Computers, Vol. C-2(., No. 2, February 1971, pp. 153-161.

38. I. E. Sutherland and C. A. Mead, “Microelectronics and computer science,”
Scientific American, Vol. 237, No. 3, September 1977, pp. 210-228.

39. Ivan E. Sutherland and Donald Oestreicher, “How big should a printed circuit
board be?" IEEE Transactions on Computers, Vol. C-22, May 1973,
pp. 537-542.

40, Robert Endre Tarjan, “Efficiency of a gobd but not linear set union
algorithm,” Journal of the Association for Computing Machinery, Vol. 25, No.
2, 1975, pp. 215-225.

41. Clark D. Thompson, A Complexity Theory for VLSI, Ph.D. dissertation,
Department of Computer Science, Carnegie-Mellon University, 1980.

42. L. G. Valiant, “Universality considerations in VLSI circuits,” December 1979,
draft (to appear in /EEE Transactions on Computers).

43. Frances Lucretia Van Scoy, Parallel Algorithms in Cellular Spaces, Ph.D.
dissertation, School of Engineering and Applied Sciences, University of
Virginia, May 1976.

-

9. ..

b/
edh

by TSRO

L

YT YT I ey

ARSI APLAPLASI ALY S5 A g g SO O
- IR ‘ =
.

N L Run s n ae e o 4

.
. A,

7f—-!

MR R PR R et St At S St Y gt T T T T T L AR g 2 e et cadbd A Sy S

SECURITY CLASSIFICATION OF TwiS PARE ’Whan Dete Entered)

REPORT DOCUMENTATION PAGE | , BEFORE Conpr BN au
1. REPORT NUMBER 2. GOV ACCESSICN NQJ 3. RECISIENT'S CATALOG NUMBER
CMU-CS-82-108 - D -AIE B EY
4. TITLE (and Subtisle) S. TYPE OF REPORT & PERIOD COVERED
- ’ Interim

AREA-EFFICIENT VLSI COMPUTATION

€. PERFORMING ORG. REPORT NUMBER

16. VISTRIBUTION STATEMENT (of this Repart)

7. AUTHOR(3) .] F3381 ;R%T(?.]GS%A]NT mﬁ’i:n(.;
CHARLES‘ ERIC LEISERSON ' MCS 78-236-76 NSF
) ‘ ‘ NOO014-76-C-0370 ONR
9. PERFORMING CRGANIZATION NAME AND ADDRESS 10. !nacaAu ELEMENT, pROJEC? TASK
Carnegie-Mellon University ‘ AREA & WORK UNIT NUMBERS
Computer Science Department
Pittsburgh, PA, 15213
11. CONTROLLING OFFICE NAME AND ADORESS : . -] 12. REPORT DATE

13. NUMBER OF PAGES

Ti. MONITORING AGENCY NAME & ADORESS(If ditfesent trom Contralling Qliice) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

TFa. DECLASSIFICATION/ DOWNGRADING
SCHEOULE

= . . ’ - - . \

17. DISTRIBUTION STATEMENT (ol the abstrect entered in Blaock 20, if ditferent trom Report)
' . N

t

- Approved for public release; distr:lbut‘:.ion. unlimited

16. SUPPLEMENTARY NOTES

19. KEY WORODS (Continue an reverse side il necessary and identily by bdlock nunder)

20. ABSTARACT (Ceontinue en reverse side If necessary and identily by block number)

[T P, S

00 .53, 1473 eoirion or 1 nov 8315 omsoLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (dhen Dete Bntered)

$/N 0102-014¢° 4601 ;

PSSP I W SN N AP - A e bom — . "

Nor N TUUTR.. SO

'
"y

< Y

o X

.
-

w

